Diurnal Variation in Surface Incident Solar Radiation Retrieved by CERES and Himawari-8
<p>Geographical distribution of observational sites used for the evaluation of satellite-retrieved Rs data. The red and magenta circles indicate the site location on the continent and island/coast.</p> "> Figure 2
<p>The sample size of the observational data at different times. The red line indicates 40% of the total sample size.</p> "> Figure 3
<p>Scatter plots of the annual average of hourly satellite-retrieved and observed Rs from 2015 to 2021 at 7:00–17:00 (<b>a</b>–<b>k</b>) and all hours (<b>l</b>).</p> "> Figure 4
<p>Diurnal variations of statistical parameters between hourly satellite-retrieved Rs and observed Rs for different types of sites. (<b>a</b>) Bias %; (<b>b</b>) mean absolute bias (MAB) %; (<b>c</b>) root mean square error (RMSE) %; and (<b>d</b>) correlation coefficient (R).</p> "> Figure 5
<p>Taylor diagram describing the standard deviation and correlation coefficient between the hourly satellite-retrieved Rs and observed Rs at 15 selected stations. The circles and crosses denote Himawari-8-retrieved Rs and CERES-retrieved Rs. “REF” can be regarded as the point of perfection, where the value closer to the point indicates a better evaluation.</p> "> Figure 6
<p>MAB between satellites and BSRN hourly Rs under different cloud types from 7:00 to 17:00. (<b>a</b>) CERES and (<b>b</b>) Himawari-8.</p> "> Figure 7
<p>MAB between satellites and BSRN hourly Rs under different cloud optical depth (COD) categories from 7:00 to 17:00.</p> "> Figure 8
<p>MAB between satellites and BSRN hourly Rs under different aerosol optical depth (AOD) categories from 7:00 to 17:00.</p> "> Figure 9
<p>Ranges (largest value minus smallest value) and variation (the standard deviation of the values) in MAB (shown in <a href="#remotesensing-16-02670-f007" class="html-fig">Figure 7</a> and <a href="#remotesensing-16-02670-f008" class="html-fig">Figure 8</a>) from satellite-retrieved hourly Rs at all ground-based sites for each hour under different COD and AOD conditions.</p> "> Figure 10
<p>Diurnal variations of MAB between hourly satellite-retrieved Rs and observed Rs at nine sites covered by different land cover types for 2015–2021. Solid lines for CERES and dashed lines for Himawari-8.</p> "> Figure 11
<p>Diurnal variations of MAB between hourly CERES-retrieved Rs and observed Rs at 39 sites covered by different land cover types for 2000–2021.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Ground-Based Observational Hourly Rs Data
2.2. Himawari-8-Retrieved Dataset
2.3. CERES-Retrieved Dataset
2.4. Methods
3. Results
3.1. Difference between Satellite-Retrieved and Observed Rs
3.2. Factors Impacting the Satellite-Retrieved Rs Difference
4. Discussion
5. Conclusions
- The accuracy of Himawari-8-retrieved hourly Rs was higher than that of CERES for 8:00–16:00. It should be noted that the accuracy of the Himawari-8 satellite-retrieved Rs data was much poorer at 17:00.
- The Himawari-8 satellite-retrieved Rs usually showed a slight overestimation, and the CERES satellite underestimated Rs at most hours.
- The bias of the two sets of satellite-retrieved Rs data at the continental sites was smaller than that at the island/coastal sites. The bias of Himawari-8 satellite-retrieved Rs data at island/coastal stations was much smaller than that of the CERES satellite.
- Both hourly products exhibited a relatively larger MAB in the cases of Stratus and Stratocumulus. Smaller MAB values were found for CERES covered by deep convection and cumulus clouds and for Himawari-8 covered by deep convection and Nimbostratus clouds. Larger MAB values at evergreen broadleaf forest sites and smaller MAB values at open shrubland sites were found for both products.
- Himawari-8 satellite-retrieved Rs showed larger sensitivity to AOD at 10:00–16:00, while CERES was more sensitive to COD than AOD at 9:00–15:00. The changes in COD had a greater impact on MAB of CERES-retrieved Rs than Himawari-8 at 9:00–15:00, while the effect of AOD was greater on CERES than Himawari-8 hourly Rs at 7:00–10:00.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Y.; Wang, K. Variability in Direct and Diffuse Solar Radiation across China from 1958 to 2017. Geophys. Res. Lett. 2020, 47, e2019GL084570. [Google Scholar] [CrossRef]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wang, K.; Wild, M. Impact of geolocations of validation data on the evaluation of surface incident shortwave radiation from Earth System Models. J. Geophys. Res. Atmos. 2015, 120, 6825–6844. [Google Scholar] [CrossRef]
- Wentz, F.J.; Schabel, M. Precise climate monitoring using complementary satellite data sets. Nature 2000, 403, 414–416. [Google Scholar] [CrossRef]
- Božnar, M.Z.; Grašič, B.; Mlakar, P.; Soares, J.; de Oliveira, A.P.; Costa, T.S. Radial frequency diagram (sunflower) for the analysis of diurnal cycle parameters: Solar energy application. Appl. Energy 2015, 154, 592–602. [Google Scholar] [CrossRef]
- Lin, P.; Liu, H.; Zhang, L. The Simulation Study of the Features of Diurnal Variation of Sea Surface Temperature in the Eastern Pacific Cold Tongue. Chin. J. Atmos. Sci. 2012, 36, 259. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, Y.; Ge, X. Impacts of the diurnal cycle of solar radiation on spiral rainbands. Adv. Atmos. Sci. 2016, 33, 1085–1095. [Google Scholar] [CrossRef]
- Ge, X.; Ma, Y.; Zhou, S.; Li, T. Impacts of the diurnal cycle of radiation on tropical cyclone intensification and structure. Adv. Atmos. Sci. 2014, 31, 1377–1385. [Google Scholar] [CrossRef]
- Pillai, J.S. Diurnal Variation of Meteorological Parameters in the Land Surface Interface. Bound.-Layer Meteorol. 1998, 89, 197–209. [Google Scholar] [CrossRef]
- Reshef, N.; Fait, A.; Agam, N. Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell Environ. 2019, 42, 1897–1912. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, T.J. Impact of the Diurnal Cycle of Solar Radiation on Intraseasonal SST Variability in the Western Equatorial Pacific. J. Clim. 2005, 18, 2628–2636. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, K.; He, Y.; Su, L.; Wu, Q.; Liu, H.; Zhang, Y. Homogenized century-long surface incident solar radiation over Japan. Earth Syst. Sci. Data 2022, 14, 463–477. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Merging ground-based sunshine duration observations with satellite cloud and aerosol retrievals to produce high-resolution long-term surface solar radiation over China. Earth Syst. Sci. Data 2021, 13, 907–922. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K. Determining Factors of Monthly to Decadal Variability in Surface Solar Radiation in China: Evidences From Current Reanalyses. J. Geophys. Res. Atmos. 2019, 124, 9161–9182. [Google Scholar] [CrossRef]
- Ji, Q.; Tsay, S.-C. On the dome effect of Eppley pyrgeometers and pyranometers. Geophys. Res. Lett. 2000, 27, 971–974. [Google Scholar] [CrossRef]
- Wild, M. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. WIREs Clim. Change 2016, 7, 91–107. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Martinez-de-Pison, F.J.; Sanz-Garcia, A. Sources of uncertainty in annual global horizontal irradiance data. Solar Energy 2018, 170, 873–884. [Google Scholar] [CrossRef]
- Urankar, G.; Prabha, T.V.; Pandithurai, G.; Pallavi, P.; Achuthavarier, D.; Goswami, B.N. Aerosol and cloud feedbacks on surface energy balance over selected regions of the Indian subcontinent. J. Geophys. Res. Atmos. 2012, 117, D04210. [Google Scholar] [CrossRef]
- Dolinar, E.K.; Dong, X.; Xi, B.; Jiang, J.H.; Su, H. Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim. Dyn. 2015, 44, 2229–2247. [Google Scholar] [CrossRef]
- Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850–854. [Google Scholar] [CrossRef]
- Ramirez Camargo, L.; Dorner, W. Comparison of satellite imagery based data, reanalysis data and statistical methods for mapping global solar radiation in the Lerma Valley (Salta, Argentina). Renew. Energy 2016, 99, 57–68. [Google Scholar] [CrossRef]
- Bamehr, S.; Sabetghadam, S. Estimation of global solar radiation data based on satellite-derived atmospheric parameters over the urban area of Mashhad, Iran. Environ. Sci. Pollut. Res. 2021, 28, 7167–7179. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ma, Q.; Li, Z.; Wang, J. Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos. 2015, 120, 6500–6514. [Google Scholar] [CrossRef]
- Tang, W.; Qin, J.; Yang, K.; Liu, S.; Lu, N.; Niu, X. Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data. Atmos. Chem. Phys. 2016, 16, 2543–2557. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, J.; Wang, T.; Letu, H.; Yuan, P.; Zhou, W.; Hu, L. Evaluation of the Himawari-8 Shortwave Downward Radiation (SWDR) Product and its Comparison With the CERES-SYN, MERRA-2, and ERA-Interim Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 519–532. [Google Scholar] [CrossRef]
- Ma, R.; Letu, H.; Yang, K.; Wang, T.; Shi, C.; Xu, J.; Shi, J.; Shi, C.; Chen, L. Estimation of Surface Shortwave Radiation From Himawari-8 Satellite Data Based on a Combination of Radiative Transfer and Deep Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5304–5316. [Google Scholar] [CrossRef]
- Wang, D.; Liang, S.; Zhang, Y.; Gao, X.; Brown, M.G.L.; Jia, A. A New Set of MODIS Land Products (MCD18): Downward Shortwave Radiation and Photosynthetically Active Radiation. Remote Sens. 2020, 12, 168. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.C.; Ishimoto, H.; Yoshida, M.; et al. A new benchmark for surface radiation products over the East Asia-Pacific region retrieved from the Himawari-8/AHI next-generation geostationary satellite. Bull. Am. Meteorol. Soc. 2021, 103, E873–E888. [Google Scholar] [CrossRef]
- Li, J.; Tang, W.; Qi, J.; Yan, Z. Mapping high-resolution surface shortwave radiation over East Asia with the new generation geostationary meteorological satellite Himawari-8. Int. J. Digit. Earth 2023, 16, 323–336. [Google Scholar] [CrossRef]
- Tang, C.; Shi, C.; Letu, H.; Ma, R.; Yoshida, M.; Kikuchi, M.; Xu, J.; Li, N.; Zhao, M.; Chen, L.; et al. Evaluation and uncertainty analysis of Himawari-8 hourly aerosol product version 3.1 and its influence on surface solar radiation before and during the COVID-19 outbreak. Sci. Total Environ. 2023, 892, 164456. [Google Scholar] [CrossRef] [PubMed]
- Letu, H.; Ma, R.; Nakajima, T.Y.; Shi, C.; Hashimoto, M.; Nagao, T.M.; Baran, A.J.; Nakajima, T.; Xu, J.; Wang, T.; et al. Surface Solar Radiation Compositions Observed from Himawari-8/9 and Fengyun-4 Series. Bull. Am. Meteorol. Soc. 2023, 104, E1772–E1789. [Google Scholar] [CrossRef]
- Lu, L.; Ma, Q. Diurnal Cycle in Surface Incident Solar Radiation Characterized by CERES Satellite Retrieval. Remote Sens. 2023, 15, 3217. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lee, K.-T. Using the Himawari-8 AHI Multi-Channel to Improve the Calculation Accuracy of Outgoing Longwave Radiation at the Top of the Atmosphere. Remote Sens. 2019, 11, 589. [Google Scholar] [CrossRef]
- Wild, M. Changes in shortwave and longwave radiative fluxes as observed at BSRN sites and simulated with CMIP5 models. AIP Conf. Proc. 2017, 1810, 090014. [Google Scholar] [CrossRef]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Müller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Frouin, R.; Murakami, H. Estimating photosynthetically available radiation at the ocean surface from ADEOS-II global imager data. J. Oceanogr. 2007, 63, 493–503. [Google Scholar] [CrossRef]
- Tanaka, T.Y.; Chiba, M. Global Simulation of Dust Aerosol with a Chemical Transport Model, MASINGAR. J. Meteorol. Soc. Jpn. Ser. II 2005, 83A, 255–278. [Google Scholar] [CrossRef]
- Yumimoto, K.; Tanaka, T.Y.; Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Maki, T. Assimilation and Forecasting Experiment for Heavy Siberian Wildfire Smoke in May 2016 with Himawari-8 Aerosol Optical Thickness. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 133–149. [Google Scholar] [CrossRef]
- Wang, X.; Iwabuchi, H.; Yamashita, T. Cloud identification and property retrieval from Himawari-8 infrared measurements via a deep neural network. Remote Sens. Environ. 2022, 275, 113026. [Google Scholar] [CrossRef]
- Almorox, J.; Ovando, G.; Sayago, S.; Bocco, M. Assessment of surface solar irradiance retrieved by CERES. Int. J. Remote Sens. 2017, 38, 3669–3683. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Eaton, B.E.; Khattatov, B.V.; Lamarque, J.-F.; Zender, C.S. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res. Atmos. 2001, 106, 7313–7336. [Google Scholar] [CrossRef]
- Su, W.; Charlock, T.P.; Rose, F.G. Deriving surface ultraviolet radiation from CERES surface and atmospheric radiation budget: Methodology. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Trepte, Q.Z.; Minnis, P.; Sun-Mack, S.; Yost, C.R.; Chen, Y.; Jin, Z.; Hong, G.; Chang, F.L.; Smith, W.L.; Bedka, K.M.; et al. Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9410–9449. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. Parameterization of the Radiative Properties of Cirrus Clouds. J. Atmos. Sci. 1993, 50, 2008–2025. [Google Scholar] [CrossRef]
- Jin, Z.; Charlock, T.P.; Smith, W.L.; Rutledge, K. A parameterization ocean surface albedo. Geophys. Res. Lett. 2004, 31, L22301. [Google Scholar] [CrossRef]
- Kato, S.; Loeb, N.G.; Rose, F.G.; Doelling, D.R.; Rutan, D.A.; Caldwell, T.E.; Yu, L.; Weller, R.A. Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances. J. Clim. 2013, 26, 2719–2740. [Google Scholar] [CrossRef]
- Wild, M.; Wacker, S.; Yang, S.; Sanchez-Lorenzo, A. Evidence for Clear-Sky Dimming and Brightening in Central Europe. Geophys. Res. Lett. 2021, 48, e2020GL092216. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Sanchez-Lorenzo, A.; Tanaka, K.; Trentmann, J.; Yuan, W.; Wild, M. Hourly Surface Observations Suggest Stronger Solar Dimming and Brightening at Sunrise and Sunset over China. Geophys. Res. Lett. 2021, 48, e2020GL091422. [Google Scholar] [CrossRef]
- Hao, D.; Asrar, G.R.; Zeng, Y.; Zhu, Q.; Wen, J.; Xiao, Q.; Chen, M. DSCOVR/EPIC-derived global hourly and daily downward shortwave and photosynthetically active radiation data at 0.1° × 0.1° resolution. Earth Syst. Sci. Data 2020, 12, 2209–2221. [Google Scholar] [CrossRef]
- Ackerman, A.S.; Toon, O.B.; Stevens, D.E.; Heymsfield, A.J.; Ramanathan, V.; Welton, E.J. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Stephens, G.L.; Li, J.; Wild, M.; Clayson, C.A.; Loeb, N.; Kato, S.; L‘Ecuyer, T.; Stackhouse, P.W.; Lebsock, M.; Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696. [Google Scholar] [CrossRef]
- Xiaoyan, Z.; Xiaoming, C.; Maosi, C.; Zhiqiang, G. Research response of land surface water and heat flux to land use land cover changes in Laizhou Bay. In Remote Sensing and Modeling of Ecosystems for Sustainability V, Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 10–14 August 2008; SPIE: Bellingham, WA, USA; p. 70830J.
- Liu, Z.; Shao, Q.; Tao, J.; Chi, W. Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China. J. Geogr. Sci. 2015, 25, 35–44. [Google Scholar] [CrossRef]
- Ryu, Y.; Berry, J.A.; Baldocchi, D.D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 2019, 223, 95–114. [Google Scholar] [CrossRef]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2020, 239, 111583. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, L.; Tang, W.; Yang, K.; Wang, J. Global and Regional Evaluation of the CERES Edition-4A Surface Solar Radiation and Its Uncertainty Quantification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2971–2985. [Google Scholar] [CrossRef]
- Shi, H.; Li, W.; Fan, X.; Zhang, J.; Hu, B.; Husi, L.; Shang, H.; Han, X.; Song, Z.; Zhang, Y.; et al. First assessment of surface solar irradiance derived from Himawari-8 across China. Solar Energy 2018, 174, 164–170. [Google Scholar] [CrossRef]
- Schwarz, M.; Folini, D.; Hakuba, M.Z.; Wild, M. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation. J. Geophys. Res. Atmos. 2017, 122, 13319–13337. [Google Scholar] [CrossRef]
- Hakuba, M.Z.; Folini, D.; Sanchez-Lorenzo, A.; Wild, M. Spatial representativeness of ground-based solar radiation measurements—Extension to the full Meteosat disk. J. Geophys. Res. Atmos. 2014, 119, 11760–11771. [Google Scholar] [CrossRef]
- Hakuba, M.Z.; Folini, D.; Sanchez-Lorenzo, A.; Wild, M. Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res. Atmos. 2013, 118, 8585–8597. [Google Scholar] [CrossRef]
- Madhavan, B.L.; Deneke, H.; Witthuhn, J.; Macke, A. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers. Atmos. Chem. Phys. 2017, 17, 3317–3338. [Google Scholar] [CrossRef]
Region | Statistical | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | Mean from 7:00 to 17:00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | |||||||||||||
Continental | Bias(H8) | 2.25 | 1.95 | −0.72 | −2.22 | 1.81 | 2.12 | 2.56 | 2.45 | 1.39 | 0.80 | 0.12 | 1.14 |
Bias(CERES) | −3.43 | −4.18 | −5.38 | −2.61 | −1.11 | −0.66 | 0.01 | 0.41 | 0.01 | 0.19 | −0.11 | −1.53 | |
MAB(H8) | 10.52 | 8.34 | 7.13 | 6.66 | 6.85 | 7.02 | 6.78 | 7.08 | 7.66 | 9.46 | 13.47 | 8.27 | |
MAB(CERES) | 8.39 | 7.90 | 7.72 | 7.68 | 7.94 | 8.20 | 8.05 | 8.22 | 8.17 | 8.30 | 9.10 | 8.15 | |
RMSE(H8) | 14.03 | 10.94 | 9.59 | 9.34 | 9.78 | 10.16 | 9.62 | 10.03 | 10.78 | 12.99 | 18.68 | 11.45 | |
RMSE(CERES) | 11.06 | 10.81 | 10.9 | 10.86 | 11.34 | 11.68 | 11.37 | 11.48 | 11.27 | 11.23 | 12.09 | 11.28 | |
R(H8) | 0.73 | 0.82 | 0.85 | 0.85 | 0.85 | 0.85 | 0.84 | 0.84 | 0.82 | 0.78 | 0.65 | 0.81 | |
R(CERES) | 0.77 | 0.80 | 0.81 | 0.81 | 0.80 | 0.79 | 0.80 | 0.79 | 0.79 | 0.78 | 0.74 | 0.79 | |
Island/coastal | Bias(H8) | −1.53 | −2.11 | −1.60 | −3.48 | −4.57 | −2.94 | −0.96 | 0.22 | −0.07 | −0.42 | −0.29 | −1.61 |
Bias(CERES) | −2.68 | −4.56 | −5.13 | −4.98 | −5.88 | −4.31 | −3.10 | −0.89 | 0.34 | 0.95 | 0.75 | −2.68 | |
MAB(H8) | 13.95 | 10.03 | 8.01 | 7.24 | 6.83 | 6.97 | 7.02 | 7.33 | 8.74 | 10.57 | 14.81 | 9.23 | |
MAB(CERES) | 14.36 | 12.53 | 12.04 | 11.74 | 11.58 | 11.77 | 11.41 | 11.35 | 11.60 | 11.7 | 11.32 | 11.95 | |
RMSE(H8) | 18.78 | 13.76 | 11.27 | 10.28 | 9.73 | 10.09 | 10.25 | 10.54 | 12.16 | 14.41 | 20.17 | 12.86 | |
RMSE(CERES) | 17.86 | 15.64 | 15.17 | 14.88 | 14.83 | 15.20 | 14.89 | 14.73 | 15.08 | 15.07 | 14.67 | 15.27 | |
R(H8) | 0.47 | 0.72 | 0.80 | 0.82 | 0.84 | 0.84 | 0.84 | 0.83 | 0.80 | 0.77 | 0.66 | 0.76 | |
R(CERES) | 0.56 | 0.66 | 0.68 | 0.68 | 0.68 | 0.67 | 0.69 | 0.69 | 0.67 | 0.69 | 0.69 | 0.67 | |
Total | Bias(H8) | 0.74 | 0.32 | −1.07 | −2.73 | −0.74 | 0.09 | 1.15 | 1.56 | 0.81 | 0.31 | −0.05 | 0.04 |
Bias(CERES) | −3.13 | −4.33 | −5.28 | −3.56 | −3.02 | −2.12 | −1.23 | −0.11 | 0.14 | 0.49 | 0.23 | −1.99 | |
MAB(H8) | 11.89 | 9.02 | 7.48 | 6.89 | 6.84 | 7.00 | 6.88 | 7.18 | 8.09 | 9.90 | 14.00 | 8.65 | |
MAB(CERES) | 10.78 | 9.75 | 9.45 | 9.31 | 9.40 | 9.63 | 9.39 | 9.47 | 9.54 | 9.66 | 9.99 | 9.67 | |
RMSE(H8) | 15.93 | 12.07 | 10.26 | 9.72 | 9.76 | 10.13 | 9.87 | 10.23 | 11.33 | 13.56 | 19.28 | 12.01 | |
RMSE(CERES) | 13.78 | 12.74 | 12.61 | 12.47 | 12.74 | 13.09 | 12.78 | 12.78 | 12.80 | 12.76 | 13.12 | 12.88 | |
R(H8) | 0.63 | 0.78 | 0.83 | 0.83 | 0.84 | 0.85 | 0.84 | 0.84 | 0.81 | 0.78 | 0.65 | 0.79 | |
R(CERES) | 0.69 | 0.74 | 0.76 | 0.76 | 0.75 | 0.74 | 0.76 | 0.75 | 0.74 | 0.75 | 0.72 | 0.74 |
Abbreviation | Cloud Type | Cloud Top Pressure | Cloud Optical Depth |
---|---|---|---|
Ci | Cirrus | 50–440 | 0–3.6 |
Cs | Cirrostratus | 440–680 | 3.6–23 |
Dc | Deep convection | 680–1000 | 23–379 |
Ac | Altocumulus | 50–440 | 0–3.6 |
As | Altostratus | 440–680 | 3.6–23 |
Ns | Nimbostratus | 680–1000 | 23–379 |
Cu | Cumulus | 50–440 | 0–3.6 |
Sc | Stratocumulus | 440–680 | 3.6–23 |
St | Stratus | 680–1000 | 23–379 |
Measures of Variation | Statistical Parameters | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | H8 | 4.09 | 4.13 | 4.04 | 3.52 | 3.61 | 3.57 | 3.64 | 3.74 | 3.74 | 3.65 | 4.66 |
(1.73) | (1.61) | (1.52) | (1.49) | (1.49) | (1.56) | (1.59) | (1.54) | (1.52) | (1.50) | (1.71) | ||
CERES | 3.63 | 3.76 | 4.70 | 5.34 | 5.61 | 5.49 | 5.63 | 5.32 | 4.63 | 3.57 | 2.69 | |
(1.49) | (1.82) | (2.20) | (2.25) | (2.39) | (2.44) | (2.28) | (2.20) | (2.04) | (1.70) | (0.98) | ||
AOD | H8 | 1.22 | 2.17 | 3.77 | 4.34 | 4.84 | 5.44 | 3.94 | 3.90 | 3.84 | 4.68 | 4.29 |
(0.50) | (0.86) | (1.51) | (1.78) | (1.99) | (2.22) | (1.58) | (1.59) | (1.56) | (1.80) | (1.59) | ||
CERES | 8.02 | 5.10 | 4.54 | 4.63 | 4.31 | 5.46 | 4.05 | 4.25 | 4.28 | 5.38 | 3.42 | |
(3.17) | (2.10) | (1.94) | (2.10) | (1.82) | (2.06) | (1.64) | (1.77) | (1.66) | (1.97) | (1.39) |
Station | Land Cover Type | Type Description |
---|---|---|
XIA | Croplands | Farmland for growing crops |
YUS | Evergreen broadleaf forest | Forests that remain green throughout the year and are mainly composed of broad-leaved tree species |
LAU | Grasslands | Large areas without trees or with sparse trees, mainly covered by herbaceous plants |
ASP | Open shrublands | Relatively sparse shrub-covered areas |
DWN | Urban and built-up | Land that includes residential, commercial, industrial facilities, and other artificial structures |
HOW | ||
NEW | ||
SAP | ||
TAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, L.; Li, Y.; Liang, L.; Ma, Q. Diurnal Variation in Surface Incident Solar Radiation Retrieved by CERES and Himawari-8. Remote Sens. 2024, 16, 2670. https://doi.org/10.3390/rs16142670
Lu L, Li Y, Liang L, Ma Q. Diurnal Variation in Surface Incident Solar Radiation Retrieved by CERES and Himawari-8. Remote Sensing. 2024; 16(14):2670. https://doi.org/10.3390/rs16142670
Chicago/Turabian StyleLu, Lu, Ying Li, Lingjun Liang, and Qian Ma. 2024. "Diurnal Variation in Surface Incident Solar Radiation Retrieved by CERES and Himawari-8" Remote Sensing 16, no. 14: 2670. https://doi.org/10.3390/rs16142670