Potential Landslide Identification in Baihetan Reservoir Area Based on C-/L-Band Synthetic Aperture Radar Data and Applicability Analysis
<p>Study area overview.</p> "> Figure 2
<p>Time–position plots: (<b>a</b>) ALOS-2 ascending; (<b>b</b>) Sentinel-1 ascending; (<b>c</b>) ALOS-2 descending; (<b>d</b>) Sentinel-1 descending.</p> "> Figure 3
<p>Technology flowchart: (<b>a</b>) InSAR monitoring; (<b>b</b>) vegetation information statistics; (<b>c</b>) vegetation coherence analysis.</p> "> Figure 4
<p>Displacement velocity map. (<b>a</b>) ALOS-2 ascending; (<b>b</b>) Sentinel-1 ascending; (<b>c</b>) ALOS-2 descending; (<b>d</b>) Sentinel-1 descending.</p> "> Figure 5
<p>Geometric distortion distribution. (<b>a</b>) ALOS-2 ascending; (<b>b</b>) Sentinel-1 ascending; (<b>c</b>) ALOS-2 descending; (<b>d</b>) Sentinel-1 descending; (<b>e-1</b>–<b>h-1</b>) geometric distortion distribution of BHT06 from ALOS-2 and Sentinel-1; (<b>e-2</b>–<b>h-2</b>) effective point distribution of BHT06 from ALOS-2 and Sentinel-1.</p> "> Figure 6
<p>Typical landslide profile (<b>a-1</b>–<b>c-1</b>) effective point distribution of BHT06-Xiaxiaomidi, BHT20-Caizidi and BHT28-Dayandong; (<b>a-2</b>–<b>c-2</b>) size of BHT06-Xiaxiaomidi, BHT20-Caizidi and BHT28-Dayandong; (<b>a-3</b>–<b>c-3</b>) deformation curve of monitoring point of BHT06-Xiaxiaomidi, BHT20-Caizidi and BHT28-Dayandong; (<b>a</b>,<b>d</b>) overview of the distribution of landslide hazards; (<b>e</b>) reservoir deformation.</p> "> Figure 7
<p>Coherence and vegetation cover overview: (<b>a-1</b>–<b>c-1</b>) fractional vegetation cover of BHT06-Xiaxiaomidi, BHT20-Caizidi and BHT28-Dayandong; (<b>a-2</b>–<b>c-2</b>) distribution of vegetation classification of BHT06-Xiaxiaomidi, BHT20-Caizidi and BHT28-Dayandong; (<b>d</b>) percentage analysis of vegetation types in the study area; (<b>e</b>) percentage analysis of vegetation cover classes in the study area.</p> "> Figure 8
<p>Effects of different thicknesses of vegetation on coherence: (<b>a-1</b>–<b>d-1</b>) visible light image of trees, shrubs, crops and bare area; (<b>a-2</b>–<b>d-2</b>) coherence of L-band of trees, shrubs, crops and bare area; (<b>a-3</b>–<b>d-3</b>) coherence of C-band of trees, shrubs, crops and bare area; (<b>e</b>) coherence statistics.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Identification and Monitoring of Landslide-Prone Areas Using SBAS-InSAR
3.2. Statistical Analysis of Vegetation Information
4. Results
4.1. Overall Identification Result
4.2. Analysis of the Typical Landslides
5. Discussion
6. Conclusions
- (1)
- By comparing the interferometric performance of SAR data in areas with varying vegetation coverage, the performance in vegetated areas is influenced by both vegetation surface scattering and volume scattering decorrelation components, specifically vegetation coverage and thickness. In areas with high overall vegetation coverage (i.e., where the proportion of areas with moderate vegetation coverage exceeds 95%), vegetation thickness has a more significant effect on interferometric performance.
- (2)
- Under the same vegetation coverage conditions, coherence is positively correlated with radar wavelength. ALOS-2 is suitable for identifying and monitoring landslide hazards in alpine-canyon terrain covered by trees, shrubs, and other vegetation. For areas with low vegetation cover and small deformations, Sentinel-1, with its high temporal resolution and shorter wavelength, offers advantages. Therefore, utilizing multi-band SAR data jointly can considerably enhance the reliability of identifying and monitoring landslide hazards, leading to better detection results.
Author Contributions
Funding
Conflicts of Interest
References
- Del Soldato, M.; Bianchini, S.; Calcaterra, D.; De Vita, P.; Martire, D.D.; Tomás, R.; Casagli, N. A New Approach for Landslide-Induced Damage Assessment. Geomat. Nat. Hazards Risk 2017, 8, 1524–1537. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Yang, C.; Zhu, W. Heifangtai Loess Landslide Type and Failure Mode Analysis with Ascending and Descending Spot-Mode TerraSAR-X Datasets. Landslides 2020, 17, 205–215. [Google Scholar] [CrossRef]
- Schuster, R.L.; Highland, L.M. The Third Hans Cloos Lecture. Urban Landslides: Socioeconomic Impacts and Overview of Mitigative Strategies. Bull. Eng. Geol. Environ. 2007, 66, 1–27. [Google Scholar] [CrossRef]
- Chen, C.; Dai, K.; Tang, X.; Cheng, J.; Pirasteh, S.; Wu, M.; Shi, X.; Zhou, H.; Li, Z. Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning. Remote Sens. 2022, 14, 4171. [Google Scholar] [CrossRef]
- Edelstein, W.N.; Madsen, S.N.; Moussessian, A.; Chen, C. Concepts and Technologies for Synthetic Aperture Radar from MEO and Geosynchronous Orbits. In Proceedings of the Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing, Honolulu, HI, USA, 9–10 November 2004; SPIE: Cergy, France, 2005; Volume 5659, pp. 195–203. [Google Scholar]
- Guo, R.; Li, S.; Chen, Y.; Li, X.; Yuan, L. Identification and Monitoring Landslides in Longitudinal Range-Gorge Region with InSAR Fusion Integrated Visibility Analysis. Landslides 2021, 18, 551–568. [Google Scholar] [CrossRef]
- Hilley, G.E.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis. Science 2004, 304, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yao, X.; Yao, J.; Zhou, Z.; Feng, X.; Liu, X. Analysis of Deformation Characteristics for a Reservoir Landslide before and after Impoundment by Multiple D-InSAR Observations at Jinshajiang River, China. Nat. Hazards 2019, 98, 719–733. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Zhang, Q.; de La Fuente, J. Large-Area Landslide Detection and Monitoring with ALOS/PALSAR Imagery Data over Northern California and Southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Shi, X.; Yang, C.; Zhang, L.; Jiang, H.; Liao, M.; Zhang, L.; Liu, X. Mapping and Characterizing Displacements of Active Loess Slopes along the Upstream Yellow River with Multi-Temporal InSAR Datasets. Sci. Total Environ. 2019, 674, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Canuti, P.; Casagli, N.; Catani, F.; Falorni, G.; Farina, P. Integration of Remote Sensing Techniques in Different Stages of Landslide Response. In Progress in Landslide Science; Springer: Berlin/Heidelberg, Germany, 2007; pp. 251–260. [Google Scholar]
- Schlögel, R.; Doubre, C.; Malet, J.-P.; Masson, F. Landslide Deformation Monitoring with ALOS/PALSAR Imagery: A D-InSAR Geomorphological Interpretation Method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- Wicks Jr, C.; Thatcher, W.; Dzurisin, D. Migration of Fluids beneath Yellowstone Caldera Inferred from Satellite Radar Interferometry. Science 1998, 282, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, L.; Ding, X.L.; Hu, J.; Li, Z.W.; Zhu, J.J. Slope Deformation Prior to Zhouqu, China Landslide from InSAR Time Series Analysis. Remote Sens. Environ. 2015, 156, 45–57. [Google Scholar] [CrossRef]
- Cai, J.; Liu, G.; Jia, H.; Zhang, B.; Wu, R.; Fu, Y.; Xiang, W.; Mao, W.; Wang, X.; Zhang, R. A New Algorithm for Landslide Dynamic Monitoring with High Temporal Resolution by Kalman Filter Integration of Multiplatform Time-Series InSAR Processing. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102812. [Google Scholar] [CrossRef]
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J.-P. Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Eker, R.; Aydın, A. Long-Term Retrospective Investigation of a Large, Deep-Seated, and Slow-Moving Landslide Using InSAR Time Series, Historical Aerial Photographs, and UAV Data: The Case of Devrek Landslide (NW Turkey). Catena 2021, 196, 104895. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Meng, X.; Yue, D.; Ma, J.; Guo, F.; Zhou, Z.; Rehman, M.U.; Khalid, Z.; Chen, G. Landslide Mapping and Analysis along the China-Pakistan Karakoram Highway Based on SBAS-InSAR Detection in 2017. J. Mt. Sci. 2021, 18, 2540–2564. [Google Scholar] [CrossRef]
- Zhao, F.; Meng, X.; Zhang, Y.; Chen, G.; Su, X.; Yue, D. Landslide Susceptibility Mapping of Karakorum Highway Combined with the Application of SBAS-InSAR Technology. Sensors 2019, 19, 2685. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, L.; Shi, T.; Wang, Y.; Huang, J.; Ye, R.; Lian, Z. Study of the Impact of Reservoir Water Level Decline on the Stability Treated Landslide on Reservoir Bank. Alex. Eng. J. 2023, 65, 481–492. [Google Scholar] [CrossRef]
- Ran, P.; Li, S.; Zhuo, G.; Wang, X.; Meng, M.; Liu, L.; Chen, Y.; Huang, H.; Ye, Y.; Lei, X. Early Identification and Influencing Factors Analysis of Active Landslides in Mountainous Areas of Southwest China Using SBAS-InSAR. Sustainability 2023, 15, 4366. [Google Scholar] [CrossRef]
- Westerhoff, R.; Steyn-Ross, M. Explanation of InSAR Phase Disturbances by Seasonal Characteristics of Soil and Vegetation. Remote Sens. 2020, 12, 3029. [Google Scholar] [CrossRef]
- Guo, Q.; Tong, L.; Wang, H. A Monitoring Method Based on Vegetation Abnormal Information Applied to the Case of Jizong Shed-Tunnel Landslide. Remote Sens. 2022, 14, 5640. [Google Scholar] [CrossRef]
- Pan, J.; Zhao, R.; Xu, Z.; Cai, Z.; Yuan, Y. Quantitative Estimation of Sentinel-1A Interferometric Decorrelation Using Vegetation Index. Front. Earth Sci. 2022, 10, 1016491. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Xu, Z.; Wu, J.; Chen, Q.; Zhang, H.; Zhang, R.; Jia, H.; Luo, X. Surface Deformation Associated with the 2008 Ms8.0 Wenchuan Earthquake from ALOS L-Band SAR Interferometry. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 496–505. [Google Scholar]
- Yang, Z.; Xi, W.; Shi, Z.; Yang, Z.; Xiao, B. Study on the relationship between landslide creep and vegetation cover in mountainous areas with complex vegetation. Sci. Surv. Mapp. 2023, 48, 157–165. [Google Scholar]
- Yi, X.; Feng, W.; Wu, M.; Ye, Z.; Fang, Y.; Wang, P.; Li, R.; Dun, J. The Initial Impoundment of the Baihetan Reservoir Region (China) Exacerbated the Deformation of the Wangjiashan Landslide: Characteristics and Mechanism. Landslides 2022, 19, 1897–1912. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Yan, K.; Li, J.; Xu, Q.; Wu, N.; Zhang, J.; Gong, T.; Liu, Y. Accurate Interpretation of Four-Dimensional Characteristics of RedBed Rock Landslide by Comprehensive Remote Sensing—Taking Kualiangzi Landslide as an Example. Geomat. Inf. Sci. Wuhan Univ. 2023. [Google Scholar] [CrossRef]
- Tian, X.; Liao, M.-S. The Analysis of Conditions for InSAR in the Field of Deformation Monitoring. Chin. J. Geophys. 2013, 56, 812–823. [Google Scholar]
Parameter | Sentinel-1 | ALOS-2 | ||
---|---|---|---|---|
Orbit direction | Ascending | Descending | Ascending | Descending |
Band | C | L | ||
Wavelength (cm) | 5.6 | 23.6 | ||
Azimuth/Range pixel spacing (m) | 2.3/13.9 | 14/2.3 | ||
Revisit frequency (d) | 12 | 14 | ||
Acquisition time | November 2021–December 2022 | November 2021–December 2022 | November 2021–December 2022 | May 2021–October 2022 |
Number of data | 35 | 32 | 11 | 9 |
FVC | Vegetation Cover Type |
---|---|
0 ≤ H ≤ 0.45 | Low Vegetation Cover |
0.45 < H ≤ 0.6 | Lower Vegetation Cover |
0.6 < H ≤ 0.75 | Medium Vegetation Cover |
0.75 < H ≤ 1 | High Vegetation Cover |
Orbit Direction | Ascending | Descending | ||
---|---|---|---|---|
Satellite platform | Sentinel-1 | ALOS-2 | Sentinel-1 | ALOS-2 |
Number of identifications | 12 | 15 | 16 | 17 |
Undetected due to vegetation | BHT24 | BHT31, BHT32 | ||
Undetected due to low deformation values | BHT24, BHT34, BHT35 | BHT07, BHT22 | BHT23 | |
Undetected due to geometric distortion | BHT16, BHT19, BHT27 | |||
Undetected due to uncovered area in the image | BHT01, BHT02 | BHT01, BHT02 |
Data Source | Sentinel-1 A | Sentinel-1 D | ALOS-2 A | ALOS-2 D |
---|---|---|---|---|
Acquisition time | 27 June–21 July 2022 | 29 June–23 July 2022 | 24 June–22 July 2022 | 28 May–25 June 2022 |
Temporal baseline (d) | 24 | 24 | 28 | 28 |
Spatial baseline (m) | 37 | 40 | 47 | 13 |
Landslide Area | BHT06 | BHT23, BHT28 | BHT06 | BHT23, BHT28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zhao, X.; Dong, X.; Dai, K.; Deng, J.; Zhuo, G.; Yu, B.; Wu, T.; Xiang, J. Potential Landslide Identification in Baihetan Reservoir Area Based on C-/L-Band Synthetic Aperture Radar Data and Applicability Analysis. Remote Sens. 2024, 16, 1591. https://doi.org/10.3390/rs16091591
Zhang R, Zhao X, Dong X, Dai K, Deng J, Zhuo G, Yu B, Wu T, Xiang J. Potential Landslide Identification in Baihetan Reservoir Area Based on C-/L-Band Synthetic Aperture Radar Data and Applicability Analysis. Remote Sensing. 2024; 16(9):1591. https://doi.org/10.3390/rs16091591
Chicago/Turabian StyleZhang, Rui, Xin Zhao, Xiujun Dong, Keren Dai, Jin Deng, Guanchen Zhuo, Bing Yu, Tingting Wu, and Jianming Xiang. 2024. "Potential Landslide Identification in Baihetan Reservoir Area Based on C-/L-Band Synthetic Aperture Radar Data and Applicability Analysis" Remote Sensing 16, no. 9: 1591. https://doi.org/10.3390/rs16091591