Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data
<p>Methane transmittance spectrum based on the HITRAN2020 and the spectral response functions of Sentinel-2A/B.</p> "> Figure 2
<p>Illustrates the workflow of the algorithm. IME stands for Integrated Mass Enhancement, which is used to quantify emission rates.</p> "> Figure 3
<p>Background estimation process. Sentinel-2 time series will undergo registration and cloud screen, and location (latitude and longitude) and surface coverage will be added for each pixel before being input into an adaptive classifier for clustering. Finally, the mean and covariance matrix for each category will be calculated based on the results. The variables x and y represent the latitude and longitude of the resampled pixel, respectively.</p> "> Figure 4
<p>Examples of XCH<sub>4</sub> retrieval at Korpeje and Permian Basin locations in simulated experiments. (Line 1) The RGB composite image of two locations. (Column 1) The first row is simulated images of XCH<sub>4</sub> for five plumes. (Column 2–3) XCH<sub>4</sub> retrieval at the Korpeje site using Matched Filter and MBMP methods. (Column 4–5) XCH<sub>4</sub> retrieval at the Permian Basin site using Matched Filter and MBMP methods. (From (<b>top</b>) to (<b>bottom</b>), from (<b>left</b>) to (<b>right</b>)).</p> "> Figure 5
<p>Comparison of scatter plots of true XCH<sub>4</sub> versus retrieved XCH<sub>4</sub>, with points colored according to density (red to purple indicates high to low). The black solid line represents the linear regression of these scatter points. The red dashed line indicates a line with a slope of 1.</p> "> Figure 6
<p>The methane plume masks detected in the methane point source emission events located in the Permian Basin. The source of the emission is symbolized by the red circle. The fifth column of the second row is the located emission source. Source map from © Google Earth.</p> "> Figure 7
<p>The observed emission rate of nine methane plumes is compared with that of Ehret et al. [<a href="#B15-remotesensing-16-01023" class="html-bibr">15</a>].</p> "> Figure 8
<p>Examples of the location and shape of detected plumes. Panel a shows the methane concentration observed by Sentinel-5P TROPOMI, with black arrows representing wind vectors (ECMWF-ERA5 10 m wind). Panel (<b>b</b>,<b>d</b>) display methane enhancements and plume masks retrieved by Sentinel-2, Panel (<b>c</b>) shows the located emission source, and Panel (<b>e</b>) presents the methane plume mask retrieved by EMIT. The time of satellite overpass is shown in the Panel (<b>a</b>,<b>b</b>,<b>e</b>) top left corner (UTC). Source map from © Google Earth.</p> ">
Abstract
:1. Introduction
- (1)
- The variability and duration of methane emissions complicate the process of identifying a completely unaffected reference, particularly for sites characterized by long-term emissions.
- (2)
- The albedo of an image can be significantly influenced by various factors, including surface changes, seasonal variations, lighting conditions, clouds, and aerosols. In addition, some artificial objects display spectral features similar to methane in the Sentinel-2 bands 11/12, making it challenging to identify methane plumes using simple band ratio models.
2. Methods
2.1. Matched Filter
2.2. Background Estimation
2.3. Calculation Procedure of Methane Target Spectrum
2.4. Methods for Quantifying Point Source Emission Rate
3. Results
3.1. Result from Simulation
3.2. Result from Real Data
3.3. Controlled Release Experiment
3.4. Application Cases
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J.; Bergamaschi, P.; Bergmann, D.; Blake, D.R.; Bruhwiler, L.; et al. Three Decades of Global Methane Sources and Sinks. Nat. Geosci. 2013, 6, 813–823. [Google Scholar] [CrossRef]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef]
- Fletcher, S.E.M.; Schaefer, H. Rising Methane: A New Climate Challenge. Science 2019, 364, 932–933. [Google Scholar] [CrossRef]
- Brandt, A.R.; Heath, G.A.; Cooley, D. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. Environ. Sci. Technol. 2016, 50, 12512–12520. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A.; et al. Assessment of Methane Emissions from the U.S. Oil and Gas Supply Chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Zavala-Araiza, D.; Lyon, D.R.; Alvarez, R.A.; Davis, K.J.; Harriss, R.; Herndon, S.C.; Karion, A.; Kort, E.A.; Lamb, B.K.; Lan, X.; et al. Reconciling Divergent Estimates of Oil and Gas Methane Emissions. Proc. Natl. Acad. Sci. USA 2015, 112, 15597–15602. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, L.; Green, R.O.; Mouroulis, P.; Eastwood, M.; Wilson, D.; Dudik, M.; Paine, C. Imaging Spectrometer Science Measurements for Terrestrial Ecology: AVIRIS and New Developments. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; pp. 1–7. [Google Scholar]
- Roberts, D.A.; Bradley, E.S.; Cheung, R.; Leifer, I.; Dennison, P.E.; Margolis, J.S. Mapping Methane Emissions from a Marine Geological Seep Source Using Imaging Spectrometry. Remote Sens. Environ. 2010, 114, 592–606. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Roberts, D.A.; Bradley, E.S.; Funk, C.C.; Dennison, P.E.; Leifer, I. High Resolution Mapping of Methane Emissions from Marine and Terrestrial Sources Using a Cluster-Tuned Matched Filter Technique and Imaging Spectrometry. Remote Sens. Environ. 2013, 134, 305–318. [Google Scholar] [CrossRef]
- Thompson, D.R.; Leifer, I.; Bovensmann, H.; Eastwood, M.; Fladeland, M.; Frankenberg, C.; Gerilowski, K.; Green, R.O.; Kratwurst, S.; Krings, T.; et al. Real-Time Remote Detection and Measurement for Airborne Imaging Spectroscopy: A Case Study with Methane. Atmos. Meas. Tech. 2015, 8, 4383–4397. [Google Scholar] [CrossRef]
- Irakulis-Loitxate, I.; Guanter, L.; Maasakkers, J.D.; Zavala-Araiza, D.; Aben, I. Satellites Detect Abatable Super-Emissions in One of the World’s Largest Methane Hotspot Regions. Environ. Sci. Technol. 2022, 56, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, E.; Gorroño, J.; Irakulis-Loitxate, I.; Varon, D.J.; Guanter, L. Mapping Methane Plumes at Very High Spatial Resolution with the WorldView-3 Satellite. Atmos. Meas. Tech. 2022, 15, 1657–1674. [Google Scholar] [CrossRef]
- Ehret, T.; De Truchis, A.; Mazzolini, M.; Morel, J.-M.; d’Aspremont, A.; Lauvaux, T.; Duren, R.; Cusworth, D.; Facciolo, G. Global Tracking and Quantification of Oil and Gas Methane Emissions from Recurrent Sentinel-2 Imagery. Environ. Sci. Technol. 2022, 56, 10517–10529. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sherwin, E.D.; Varon, D.J.; Brandt, A.R. Detecting and Quantifying Methane Emissions from Oil and Gas Production: Algorithm Development with Ground-Truth Calibration Based on Sentinel-2 Satellite Imagery. Atmos. Meas. Tech. 2022, 15, 7155–7169. [Google Scholar] [CrossRef]
- Alexe, M.; Bergamaschi, P.; Segers, A.; Detmers, R.; Butz, A.; Hasekamp, O.; Guerlet, S.; Parker, R.; Boesch, H.; Frankenberg, C.; et al. Inverse Modelling of CH4 Emissions for 2010–2011 Using Different Satellite Retrieval Products from GOSAT and SCIAMACHY. Atmos. Chem. Phys. 2015, 15, 113–133. [Google Scholar] [CrossRef]
- Bergamaschi, P.; Houweling, S.; Segers, A.; Krol, M.; Frankenberg, C.; Scheepmaker, R.A.; Dlugokencky, E.; Wofsy, S.C.; Kort, E.A.; Sweeney, C.; et al. Atmospheric CH4 in the First Decade of the 21st Century: Inverse Modeling Analysis Using SCIAMACHY Satellite Retrievals and NOAA Surface Measurements. J. Geophys. Res. Atmos. 2013, 118, 7350–7369. [Google Scholar] [CrossRef]
- Butz, A.; Galli, A.; Hasekamp, O.; Landgraf, J.; Tol, P.; Aben, I. TROPOMI Aboard Sentinel-5 Precursor: Prospective Performance of CH4 Retrievals for Aerosol and Cirrus Loaded Atmospheres. Remote Sens. Environ. 2012, 120, 267–276. [Google Scholar] [CrossRef]
- Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.; et al. Quantifying Methane Emissions from the Global Scale down to Point Sources Using Satellite Observations of Atmospheric Methane. Atmos. Chem. Phys. 2022, 22, 9617–9646. [Google Scholar] [CrossRef]
- Guanter, L.; Irakulis-Loitxate, I.; Gorroño, J.; Sánchez-García, E.; Cusworth, D.H.; Varon, D.J.; Cogliati, S.; Colombo, R. Mapping Methane Point Emissions with the PRISMA Spaceborne Imaging Spectrometer. Remote Sens. Environ. 2021, 265, 112671. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Jervis, D.; McKeever, J.; Durak, B.O.A.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D Imaging Spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Varon, D.J.; Jervis, D.; McKeever, J.; Spence, I.; Gains, D.; Jacob, D.J. High-Frequency Monitoring of Anomalous Methane Point Sources with Multispectral Sentinel-2 Satellite Observations. Atmos. Meas. Tech. 2021, 14, 2771–2785. [Google Scholar] [CrossRef]
- Mok, P.Y.; Huang, H.Q.; Kwok, Y.L.; Au, J.S. A Robust Adaptive Clustering Analysis Method for Automatic Identification of Clusters. Pattern Recognit. 2012, 45, 3017–3033. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Roger, J.; Irakulis-Loitxate, I.; Valverde, A.; Gorroño, J.; Chabrillat, S.; Brell, M.; Guanter, L. High-Resolution Methane Mapping with the EnMAP Satellite Imaging Spectroscopy Mission. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4102012. [Google Scholar] [CrossRef]
- Ayasse, A.K.; Dennison, P.E.; Foote, M.; Thorpe, A.K.; Joshi, S.; Green, R.O.; Duren, R.M.; Thompson, D.R.; Roberts, D.A. Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sens. 2019, 11, 3054. [Google Scholar] [CrossRef]
- Fei, L.I.; Shiwei, S.U.N.; Yongguang, Z.; Chenxi, F.; Cuihong, C.; Huiqin, M.A.O.; Yinnian, L.I.U. Mapping Methane Super-Emitters in China and United States with GF5-02 Hyperspectral Imaging Spectrometer. Natl. Remote Sens. Bull. 2023, 1–15. [Google Scholar] [CrossRef]
- Thompson, D.R.; Thorpe, A.K.; Frankenberg, C.; Green, R.O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S. Space-Based Remote Imaging Spectroscopy of the Aliso Canyon CH4 Superemitter. Geophys. Res. Lett. 2016, 43, 6571–6578. [Google Scholar] [CrossRef]
- Thorpe, A.K.; Green, R.O.; Thompson, D.R.; Brodrick, P.G.; Chapman, J.W.; Elder, C.D.; Irakulis-Loitxate, I.; Cusworth, D.H.; Ayasse, A.K.; Duren, R.M.; et al. Attribution of Individual Methane and Carbon Dioxide Emission Sources Using EMIT Observations from Space. Sci. Adv. 2023, 9, eadh2391. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Han, G.; Mao, H.; Chen, C.; Shi, T.; Yang, K.; Ma, X.; Gong, W. Improving Quantification of Methane Point Source Emissions from Imaging Spectroscopy. Remote Sens. Environ. 2023, 295, 113652. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Pereira, K.; Boukabara, S.; Brown, P.D. Atmospheric Radiative Transfer Modeling: A Summary of the AER Codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Atmospheric & Environmental Research (AER) Radiative Transfer Working Group Website. Available online: http://rtweb.aer.com/coverpg.html (accessed on 13 March 2024).
- Anderson, G.; Clough, S.; Kneizys, F.; Chetwynd, J.; Shettle, E. AFGL Atmospheric Constituent Profiles. Environ. Res. Pap. 1986, 954, 1–46. [Google Scholar]
- Cusworth, D.H.; Duren, R.M.; Thorpe, A.K.; Tseng, E.; Thompson, D.; Guha, A.; Newman, S.; Foster, K.T.; Miller, C.E. Using Remote Sensing to Detect, Validate, and Quantify Methane Emissions from California Solid Waste Operations. Environ. Res. Lett. 2020, 15, 054012. [Google Scholar] [CrossRef]
- Frankenberg, C.; Thorpe, A.K.; Thompson, D.R.; Hulley, G.; Kort, E.A.; Vance, N.; Borchardt, J.; Krings, T.; Gerilowski, K.; Sweeney, C.; et al. Airborne Methane Remote Measurements Reveal Heavy-Tail Flux Distribution in Four Corners Region. Proc. Natl. Acad. Sci. USA 2016, 113, 9734–9739. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 2 February 2024).
- Sherwin, E.D.; Rutherford, J.S.; Chen, Y.; Aminfard, S.; Kort, E.A.; Jackson, R.B.; Brandt, A.R. Single-Blind Validation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions. Sci. Rep. 2023, 13, 3836. [Google Scholar] [CrossRef]
- Gorroño, J.; Varon, D.J.; Irakulis-Loitxate, I.; Guanter, L. Understanding the Potential of Sentinel-2 for Monitoring Methane Point Emissions. Atmos. Meas. Tech. 2023, 16, 89–107. [Google Scholar] [CrossRef]
- Bell, B.; Hersbach, H.; Simmons, A.; Berrisford, P.; Dahlgren, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis: Preliminary Extension to 1950. Q. J. R. Meteorol. Soc. 2021, 147, 4186–4227. [Google Scholar] [CrossRef]
Matched Filter | MBMP | |||||
---|---|---|---|---|---|---|
Korpeje | Hassi Messaoud | Permian Basin | Korpeje | Hassi Messaoud | Permian Basin | |
Accuracy | 0.8208 | 0.7594 | 0.7945 | 0.8292 | 0.7932 | 0.6071 |
Precision | 0.7201 | 0.7112 | 0.7233 | 0.6907 | 0.6485 | 0.4156 |
Recall | 0.82 | 0.7830 | 0.7006 | 0.6452 | 0.5948 | 0.3682 |
F1 score | 0.7668 | 0.7454 | 0.7118 | 0.6672 | 0.6205 | 0.3905 |
Time | Whether Release Methane | Retrieval Results | Wind Speed (m/s) | Retrieval Emission Rate (t/h) | Real Emission Rate (t/h) |
---|---|---|---|---|---|
17 October 2021 | N | No plume | 0 | 0 | |
19 October 2021 | Y | Plume | 1.8 | 5.06 | 7.2 |
22 October 2021 | Y | Plume | 2.2 | 3.25 | 1.7 |
24 October 2021 | Cloudy | ||||
27 October 2021 | Y | Plume | 4.3 | 4.9 | 3.5 |
29 October 2021 | Y | Plume | 4.8 | 3.71 | 5.0 |
1 November 2021 | Cloudy | ||||
3 November 2021 | Y | No Plume | 0 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Fan, X.; Jian, H.; Yan, F. Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data. Remote Sens. 2024, 16, 1023. https://doi.org/10.3390/rs16061023
Wang H, Fan X, Jian H, Yan F. Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data. Remote Sensing. 2024; 16(6):1023. https://doi.org/10.3390/rs16061023
Chicago/Turabian StyleWang, Hongzhou, Xiangtao Fan, Hongdeng Jian, and Fuli Yan. 2024. "Exploiting the Matched Filter to Improve the Detection of Methane Plumes with Sentinel-2 Data" Remote Sensing 16, no. 6: 1023. https://doi.org/10.3390/rs16061023