Tracking the 2D/3D Morphological Changes of Tidal Flats Using Time Series Remote Sensing Data in Northern China
<p>Geographical setting of the study area. (<b>a</b>) Location of the study area and water indices used on different shorelines. (<b>b</b>) The number of satellite images and the distribution of observation pixels.</p> "> Figure 2
<p>Workflow for mapping tidal flats.</p> "> Figure 3
<p>Comparison of water index characteristics between tidal flat and water body. (<b>a1</b>) NDWI in Yangtze River Estuary, (<b>a2</b>) mNDWI in Yangtze River Estuary, (<b>a3</b>) AWEI in Yangtze River Estuary, (<b>b1</b>) NDWI in Yellow River Estuary, (<b>b2</b>) mNDWI in Yellow River Estuary, (<b>b3</b>) AWEI in Yellow River Estuary.</p> "> Figure 4
<p>Illustration of workflow with case site in the Nanhui tidal flats of the Yangtze Estuary. (<b>a</b>) Satellite images, (<b>b</b>) mNDWI Water Index, (<b>c</b>) K-means++ classification and geographic landmarks, (<b>d</b>) water-land binary image, (<b>e</b>) water frequency, and (<b>f</b>) relative elevation.</p> "> Figure 5
<p>Correlation between the relative elevation frequency of tidal flats and ICESAT-2 data. (<b>a</b>) Liaohe Estuary, (<b>b</b>) Diaokou River Estuary, (<b>c</b>) radial sand ridges (RSRS) in Jiangsu middle coast, (<b>d</b>) Jiuduan sands, and (<b>e</b>) Nanhui Beach.</p> "> Figure 6
<p>The spatial distribution coverage and areas of the three types of tidal flats along the coast of the Bohai and Yellow Seas in 2022. Subfigures show tidal flats in (<b>a</b>) the Jiangsu middle coast radial sand, (<b>b</b>) Liao River Estuary, (<b>c</b>) Bohai Bay, (<b>d</b>) Yellow River Estuary, (<b>e</b>) the Jiangsu middle coast, and (<b>f</b>) Yangtze River Estuary.</p> "> Figure 7
<p>The tidal flat locations of different regions. Starting from the northeastern coastline and heading south, the sections are identified as L1, L2, L3, H1, H2, H3, C1, C2, and C3.</p> "> Figure 8
<p>The profile of different regions. (<b>a</b>) Profile lines in the Liao River Estuary, (<b>b</b>,<b>c</b>) profile lines in the Bohai Bay, (<b>d</b>) profiles lines in the Yellow River Estuary, (<b>e</b>) profile line in the Laizhou Bay, (<b>f</b>–<b>h</b>) profile lines in the central-northern coastal section of Jiangsu, (<b>i</b>) profile line in the Chongming east beach, and (<b>j</b>) profile line in the Jiuduansha sandbank.</p> "> Figure 9
<p>The morphological changes in transects over the study period. (<b>a</b>) Represents the profile line of “1” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>b</b>) represents the profile line of “2” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>c</b>) represents the profile line of “3” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>d</b>) represents the profile line of “4” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>e</b>) represents the profile line of “5” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>f</b>) represents the profile line of “6” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>g</b>) represents the profile line of “7” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>h</b>) represents the profile line of “8” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>i</b>) represents the profile line of “9” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, and (<b>j</b>) represents the profile line of “10” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>k</b>) represents the profile line of “11” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>.</p> "> Figure 10
<p>The profile plots of RSRS are drawn based on the positions of the profile lines. (<b>a</b>) Represents the profile line of “12” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>b</b>) represents the profile line of “13” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, (<b>c</b>) represents the profile line of “14” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>, and (<b>d</b>) represents the profile line of “15” in <a href="#remotesensing-16-00886-f008" class="html-fig">Figure 8</a>.</p> "> Figure 11
<p>Comparisons of tidal flat areas with other results, including MTWN, CTF, and FUDAN/OU.</p> "> Figure 12
<p>Comparison of the tidal flat extent in our study (No. 1), Jia’s study (CTF) (No. 2), and Zhang’s study (MTWN) (No. 3) in (<b>a1</b>–<b>a3</b>) Bohai Bay, (<b>b1</b>–<b>b3</b>) Wulei Island Bay, (<b>c1</b>–<b>c3</b>) Dingzi Port, and (<b>d1</b>–<b>d3</b>) Chongming east tidal flat.</p> "> Figure 13
<p>Submarine bathymetry and circulation distribution in the Yellow and Bohai Seas. (YSWC) Yellow Sea Warm Current, (YSCC) Yellow Sea Coastal Current, (ZFCC) Zhejiang and Fujian Coastal Current. The bathymetry is from NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-Second Global Relief Model.</p> "> Figure 14
<p>Two forms of tidal flat erosion. (<b>a</b>) The form of managed coastline erosion, and (<b>b</b>) the form of natural coastline erosion.</p> "> Figure 15
<p>Sediment transport of major rivers. (<b>a</b>) The average sediment transport of rivers during the early 21st century, and (<b>b</b>) sediment transport of major rivers in the past twenty years.</p> "> Figure 16
<p>The changes in tidal flats and vegetation in the Yangtze River Estuary from 2018 to 2022. (<b>a</b>) The northern portion of Chongming East Beach, (<b>b</b>) the southern portion of Hengduan Sands, and (<b>c</b>) the eastern portion of Nanhui Beach.</p> ">
Abstract
:1. Introduction
- (1)
- How can we accurately extract the water surface area, at different degrees of turbidity, of coastal water over a large spatial scale?
- (2)
- How do tidal flats change in 2D/3D scale after the cessation of coastal reclamation, and what are the main drivers?
2. Material and Methods
2.1. Study Area
2.2. Data Sources
2.3. Pixel-Based Multi-Indices Tidal Flat Mapping Algorithm
2.3.1. Assessing Temporal Changes in Coastline
2.3.2. Water Frequency Generation from Time Series Images
2.3.3. Tidal Flat Extraction
2.3.4. Accuracy Assessment
3. Results
3.1. Accuracy Assessment Result
3.2. 2D Changes in Tidal Flats
3.3. 3D Changes in Tidal Flats
4. Discussion
4.1. Robustness and Uncertainties
4.2. Drivers of Tidal Flat Dynamics in YBS
4.2.1. Tidal Flat Changes Induced by Sediment
4.2.2. Tidal Flat Changes Induced by Vegetation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyer, K.R.; Christie, M.C.; Wright, E.W. The classification of intertidal mudflats. Cont. Shelf Res. 2000, 20, 1039–1060. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; Clemens, R.S.; Roelfsema, C.M.; Fuller, R.A. Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive. Remote Sens. 2012, 4, 3417–3426. [Google Scholar] [CrossRef]
- Ma, Z.; Melville, D.S.; Liu, J.; Chen, Y.; Yang, H.; Ren, W.; Zhang, Z.; Piersma, T.; Li, B. Rethinking China’s new great wall. Science 2014, 346, 912–914. [Google Scholar] [CrossRef]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef]
- Rodriguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef]
- Dhanjal-Adams, K.L.; Hanson, J.O.; Murray, N.J.; Phinn, S.R.; Wingate, V.R.; Mustin, K.; Lee, J.R.; Allan, J.R.; Cappadonna, J.L.; Studds, C.E.; et al. The distribution and protection of intertidal habitats in Australia. Emu Austral Ornithol. 2016, 116, 208–214. [Google Scholar] [CrossRef]
- Phinn, S.R.; Kovacs, E.M.; Roelfsema, C.M.; Canto, R.F.; Collier, C.J.; McKenzie, L.J. Assessing the potential for satellite image monitoring of seagrass thermal dynamics: For inter- and shallow sub-tidal seagrasses in the inshore Great Barrier Reef World Heritage Area, Australia. Int. J. Digit. Earth 2018, 11, 803–824. [Google Scholar] [CrossRef]
- Ghosh, S.; Mishra, D.R.; Gitelson, A.A. Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico—A methodological approach using MODIS. Remote Sens. Environ. 2016, 173, 39–58. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Choi, Y.R.; Banerjee, A.; Zilong, X. Mapping Trajectories of Coastal Land Reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef]
- Wu, W.; Gao, Y.; Chen, C.; Sun, Y.; Su, H. A Framework for Assessing the Dynamic Coastlines Induced by Urbanization Using Remote Sensing Data: A Case Study in Fujian, China. Remote Sens. 2022, 14, 2911. [Google Scholar] [CrossRef]
- Ren, C.; Wang, Z.; Zhang, Y.; Zhang, B.; Chen, L.; Xi, Y.; Xiao, X.; Doughty, R.B.; Liu, M.; Jia, M.; et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101902. [Google Scholar] [CrossRef]
- Jung, P.S.; Seo, H.-J.; Min, P.S.; Park, S.-H.; Ahn, I.J.; Seo, K.S. The Analysis of Coastal Erosion and Erosion Impact Assessment in the East Coast. J. Korean Soc. Coast. Ocean Eng. 2021, 33, 246–256. [Google Scholar] [CrossRef]
- Beeharry, Y.D.; Bekaroo, G.; Bokhoree, C.; Phillips, M.R. Impacts of sea-level rise on coastal zones of Mauritius: Insights following calculation of a coastal vulnerability index. Nat. Hazards 2022, 114, 27–55. [Google Scholar] [CrossRef]
- Lovelock, C.E.; Feller, I.C.; Reef, R.; Hickey, S.; Ball, M.C. Mangrove dieback during fluctuating sea levels. Sci. Rep. 2017, 7, 1680. [Google Scholar] [CrossRef]
- Yim, J.; Kwon, B.-O.; Nam, J.; Hwang, J.H.; Choi, K.; Khim, J.S. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: The gains or losses in ecosystem services. Environ. Pollut. 2018, 241, 74–84. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.-F.; Voukouvalas, E.; Feyen, L.J.S.R. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef]
- Dethier, E.N.; Renshaw, C.E.; Magilligan, F.J.J.S. Rapid changes to global river suspended sediment flux by humans. Science 2022, 376, 1447–1452. [Google Scholar] [CrossRef]
- Wu, W.; Zhi, C.; Gao, Y.; Chen, C.; Chen, Z.; Su, H.; Lu, W.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef]
- Pari, Y.; Murthy, M.R.; Subramanian, B.; Ramachandran, S. Morphological changes at Vellar estuary, India—Impact of the December 2004 tsunami. J. Environ. Manag. 2008, 89, 45–57. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wen, H.; Ruan, H.; Zhou, Z.; Luo, K.; Zhong, F. High-resolution monitoring of beach topography and its change using unmanned aerial vehicle imagery. Ocean Coast. Manag. 2018, 160, 103–116. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Zhao, Y.; Cao, J.; Xu, M. Application of Airborne LiDAR Measurements to the Topographic Survey of the Tidal Flats of the Northern Jiangsu Radial Sand Ridges in the Southern Yellow Sea. Front. Mar. Sci. 2022, 9, 871156. [Google Scholar] [CrossRef]
- Mason, D.C.; Davenport, I.J.; Robinson, G.J.H.; Flather, R.A.; McCartney, B.S. Construction of an Inter-Tidal Digital Elevation Model by the Water-Line Method. Geophys. Res. Lett. 1995, 22, 3187–3190. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Turki, I.; Laignel, B. Intertidal topography mapping using the waterline method from Sentinel-1 &-2 images: The examples of Arcachon and Veys Bays in France. ISPRS J. Photogramm. Remote Sens. 2020, 163, 98–120. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Q.; Wang, H.; Kang, Y.; Li, X. Automatic Waterline Extraction and Topographic Mapping of Tidal Flats From SAR Images Based on Deep Learning. Geophys. Res. Lett. 2022, 49, e2021GL096007. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Kim, C.-H.; Lee, Y.-K.; Won, J.-S.; Chun, S.-S.; Lee, S. Detecting the intertidal morphologic change using satellite data. Estuar. Coast. Shelf Sci. 2008, 78, 623–632. [Google Scholar] [CrossRef]
- Chen, L.C.; Rau, J.Y. Detection of shoreline changes for tideland areas using multi-temporal satellite images. Int. J. Remote Sens. 1998, 19, 3383–3397. [Google Scholar] [CrossRef]
- Chang, M.; Li, P.; Li, Z.; Wang, H. Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sens. 2022, 14, 1789. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Tian, B.; Wu, W.; Zhou, Y. Tide2Topo: A new method for mapping intertidal topography accurately in complex estuaries and bays with time-series Sentinel-2 images. ISPRS J. Photogramm. Remote Sens. 2023, 200, 55–72. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, M.; Chen, C.; Chen, Z.; Yang, H.; Su, H. Coastal reclamation shaped narrower and steeper tidal flats in Fujian, China: Evidence from time-series satellite data. Ocean Coast. Manag. 2024, 247, 106933. [Google Scholar] [CrossRef]
- Sagar, S.; Roberts, D.; Bala, B.; Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 2017, 195, 153–169. [Google Scholar] [CrossRef]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid Invasion of Spartina Alterniflora in the Coastal Zone of Mainland China: Spatiotemporal Patterns and Human Prevention. Sensors 2019, 19, 2308. [Google Scholar] [CrossRef]
- MacKinnon, J.; Verkuil, Y.I.; Murray, N. IUCN Situation Analysis on East and Southeast Asian Intertidal Habitats, with Particular Reference to the Yellow Sea (Including the Bohai Sea); Occasional Paper of the IUCN Species Survival Commission no. 47; IUCN: Gland, Switzerland, 2012. [Google Scholar]
- Wei, Y.; Jiao, J.; Zhao, G.; Zhao, H.; He, Z.; Mu, X.J.C. Spatial–temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950–2013. Catena 2016, 140, 105–115. [Google Scholar] [CrossRef]
- Qiao, S.; Shi, X.; Wang, G.; Zhou, L.; Hu, B.; Hu, L.; Yang, G.; Liu, Y.; Yao, Z.; Liu, S. Sediment accumulation and budget in the Bohai sea, Yellow Sea and East China sea. Mar. Geol. 2017, 390, 270–281. [Google Scholar] [CrossRef]
- Zhou, Z.; Bian, C.; Chen, S.; Li, Z.; Jiang, W.; Wang, T.; Bi, R. Sediment concentration variations in the East China Seas over multiple timescales indicated by satellite observations. J. Mar. Syst. 2020, 212, 103430. [Google Scholar] [CrossRef]
- Wang, S.; Mao, Y.; Zheng, L.; Qiu, Z.; Bilal, M.; Sun, D. Remote sensing of water turbidity in the Eastern China Seas from Geostationary Ocean Colour Imager. Int. J. Remote Sens. 2020, 41, 4080–4101. [Google Scholar] [CrossRef]
- Xu, H. Development of remote sensing water indices:a review. J. Fuzhou Univ. Nat. Sci. Ed. 2021, 49, 613–625. [Google Scholar]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Nguyen, U.N.T.; Pham, L.T.H.; Dang, T.D. an automatic water detection approach using Landsat 8 OLI and Google earth engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess. 2020, 192, 616. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Zhou, M.; Zhang, S.; Zhan, W.; Sun, C.; Duan, Y. Landsat 8 OLI image based terrestrial water extraction from heterogeneous backgrounds using a reflectance homogenization approach. Remote Sens. Environ. 2015, 171, 14–32. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Sunder, S.; Ramsankaran, R.; Ramakrishnan, B. Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environ. Monit. Assess. 2017, 189, 290. [Google Scholar] [CrossRef]
- Le Hung, T.; Thi Giang, L.; Van Hoan, K.; Thi Minh Ly, T.; Thi Thu Nga, N. Application of remote sensing technique for shoreline change detection in Ninh Binh and Nam Dinh provinces (Vietnam) during the period 1988 to 2018 based on water indices. Russ. J. Earth Sci. 2020, 20, ES2004. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Li, D.; Wu, B.; Chen, B.; Xue, Y.; Zhang, Y. Review of water body information extraction based on satellite remote sensing. J. Tsinghua Univ. Sci. Technol. 2020, 60, 147–161. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LO, USA, 7–9 January 2007; pp. 1027–1035. [Google Scholar]
- Wang, X.; Xiao, X.; Zou, Z.; Hou, L.; Qin, Y.; Dong, J.; Doughty, R.B.; Chen, B.; Zhang, X.; Chen, Y.; et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 163, 312–326. [Google Scholar] [CrossRef]
- Wu, W.; Zhi, C.; Chen, C.; Tian, B.; Chen, Z.; Su, H. Detecting annual anthropogenic encroachment on intertidal vegetation using full Landsat time-series in Fujian, China. GIScience Remote Sens. 2022, 59, 2266–2282. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, N.; Li, Y.; Li, Y. Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sens. Environ. 2022, 269, 112799. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Wang, H.; Wang, A.; Bi, N.; Zeng, X.; Xiao, H. Seasonal distribution of suspended sediment in the Bohai Sea, China. Cont. Shelf Res. 2014, 90, 17–32. [Google Scholar] [CrossRef]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Exploratory morphodynamic modeling of the evolution of the Jiangsu coast, China, since 1855: Contributions of old Yellow River-derived sediment. Mar. Geol. 2017, 390, 306–320. [Google Scholar] [CrossRef]
- Liu, J.; Saito, Y.; Kong, X.; Wang, H.; Xiang, L.; Wen, C.; Nakashima, R. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last similar to 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quat. Sci. Rev. 2010, 29, 2424–2438. [Google Scholar] [CrossRef]
- Zheng, Q.; Fang, G.; Song, Y.T. Introduction to special section: Dynamics and circulation of the Yellow, East, and South China Seas. J. Geophys. Res. 2006, 111, C11S01. [Google Scholar] [CrossRef]
- Wang, A.; Wang, H.; Bi, N.; Wu, X. Sediment transport and dispersal pattern from the Bohai Sea to the Yellow Sea. J. Coast. Res. 2016, 74, 104–116. [Google Scholar] [CrossRef]
- Xu, H.; Jia, A.; Song, X.; Bai, Y. Extraction and spatiotemporal evolution analysis of tidal flats in the Bohai Rim during 1984-2019 based on remote sensing. J. Geogr. Sci. 2023, 33, 76–98. [Google Scholar] [CrossRef]
- Kim, W.; Doh, S.-J.; Yu, Y.; Lee, Y.I. Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis. Mar. Geol. 2013, 337, 9–19. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Jin, S.; Sun, C.; Wei, X. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. Remote Sens. 2019, 150, 27–43. [Google Scholar] [CrossRef]
- Ni, W.; Wang, Y.; Zou, X.; Zhang, J.; Gao, J. Sediment dynamics in an offshore tidal channel in the southern Yellow Sea. Int. J. Sediment Res. 2014, 29, 246–259. [Google Scholar] [CrossRef]
- Wu, W.-T.; Zhou, Y.-X.; Tian, B.J.O.; Management, C. Coastal wetlands facing climate change and anthropogenic activities: A remote sensing analysis and modelling application. Ocean. Coast. Manag. 2017, 138, 1–10. [Google Scholar] [CrossRef]
Index | Tidal Height (cm) |
---|---|
Normalized Difference Water Index (NDWI) | |
Modified Normalized Difference Water Index (mNDWI) | |
Automated Water Extraction Index (AWEI) | |
Normalized Difference Vegetation Index (NDVI) |
Period | Class | Tidal Flats | Non-Tidal Flat | UA (%) | OA (%) |
---|---|---|---|---|---|
2018 | Tidal flats | 3607 | 95 | 97.43 | 95.77 |
Non-tidal flat | 197 | 3012 | 93.86 | ||
PA (%) | 94.82 | 96.94 | |||
F1_Score | 96.10 | 95.37 | |||
2020 | Tidal flats | 3755 | 110 | 97.15 | 95.83 |
Non-tidal flat | 185 | 3025 | 94.23 | ||
PA (%) | 95.30 | 96.80 | |||
F1_Score | 96.21 | 95.49 | |||
2022 | Tidal flats | 3737 | 81 | 97.87 | 95.60 |
Non-tidal flat | 235 | 3132 | 93.02 | ||
PA (%) | 94.08 | 97.47 | |||
F1_Score | 95.93 | 95.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Z.; Guo, S.; Chen, C.; Zheng, H.; Hu, Y.; Su, H.; Wu, W. Tracking the 2D/3D Morphological Changes of Tidal Flats Using Time Series Remote Sensing Data in Northern China. Remote Sens. 2024, 16, 886. https://doi.org/10.3390/rs16050886
Gan Z, Guo S, Chen C, Zheng H, Hu Y, Su H, Wu W. Tracking the 2D/3D Morphological Changes of Tidal Flats Using Time Series Remote Sensing Data in Northern China. Remote Sensing. 2024; 16(5):886. https://doi.org/10.3390/rs16050886
Chicago/Turabian StyleGan, Zhiquan, Shurong Guo, Chunpeng Chen, Hanjie Zheng, Yuekai Hu, Hua Su, and Wenting Wu. 2024. "Tracking the 2D/3D Morphological Changes of Tidal Flats Using Time Series Remote Sensing Data in Northern China" Remote Sensing 16, no. 5: 886. https://doi.org/10.3390/rs16050886