Experimental Analysis of Deep-Sea AUV Based on Multi-Sensor Integrated Navigation and Positioning
<p>The principle of navigation and positioning of the AUV based on two models. (The pink and orange arrows indicate the signal transmission and return.)</p> "> Figure 2
<p>Block diagram of shallow coupling mode.</p> "> Figure 3
<p>The navigation and positioning mode conversion of AUV.</p> "> Figure 4
<p>Situation at the site of the AUV deployment operation.</p> "> Figure 5
<p>SVP and CTD.</p> "> Figure 6
<p>Array of four datum points.</p> "> Figure 7
<p>Attitude changes during AUV diving.</p> "> Figure 8
<p>Forward velocity during AUV diving.</p> "> Figure 9
<p>Depth and altitude information during AUV diving.</p> "> Figure 10
<p>AUV trajectory from “Mode I”. (<b>a</b>) Viewpoint 1; (<b>b</b>) Viewpoint 2.</p> "> Figure 11
<p>AUV trajectory in both modes.</p> "> Figure 12
<p>AUV trajectory in both modes (data do not include AUV climb phase). (<b>a</b>) Front view; (<b>b</b>) top view.</p> "> Figure 13
<p>Part of the near-bottom trajectory of an AUV.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Underwater Acoustic Positioning System
2.2. LBL/SINS/DVL Integrated Navigation System Mode
2.3. Three Navigation and Positioning Modes for AUV
3. Experiment and Analysis
3.1. Description of the Background to the Experiment
3.2. Deep-Sea Navigation and Positioning Experiments and Analyses of AUV
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Xu, T.; Xue, S. Progresses and Prospects in Deceloping Marine Geodetic Datum and Marine Nacigation of China. Acta Geod. Geophys. Sin. 2017, 46, 1–8. [Google Scholar]
- Wu, L.; Jing, Z.; Chen, X.; Li, C.; Zhang, G.; Wang, S.; Dong, B.; Zhuang, G. Marine science in China: Current status and future outlooks. Earth Sci. Front. 2022, 29, 1. [Google Scholar] [CrossRef]
- Dang, Y.; Jiang, T.; Yang, Y.; Sun, H.; Jiang, W.; Xue, S.; Zhang, X.; Yu, B.; Luo, Z.; Li, X.; et al. Research progress of geodesy in China (2019—2023). Acta Geod. Et Cartogr. Sin. 2023, 52, 1419–1436. [Google Scholar] [CrossRef]
- Yang, Y. Concepts of Comprehensive PNT and Related Key Technologies. Acta Geod. Cartogr. Sin. 2016, 45, 505–510. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Xu, J.; Tang, J.; Guo, H.; He, H. Contribution of the Compass satellite navigation system to global PNT users. Chin. Sci. Bull 2011, 56, 2813–2819. [Google Scholar] [CrossRef]
- Wu, Y.; Ta, X.; Xiao, R.; Wei, Y.; Li, D. Survey of underwater robot positioning navigation. Appl. Ocean Res. 2019, 90, 101845. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Li, M. Progress and Future Trend of Hydrographic Surveying and Charting. J. Geomat. 2009, 34, 25–27. [Google Scholar] [CrossRef]
- Morgado, M.; Batista, P.T.M.; Oliveira, P.J.; Silvestre, C. Position USBL/DVL Sensor-based Navigation Filter in the presence of Unknown Ocean Currents. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X.S.; Li, Y.; Gong, S.P. AUV Fault-tolerant technology based on inertial navigation and underwater acoustics assisted navigation system. J. Chin. Inert. Technol. 2013, 21, 512–516. [Google Scholar]
- Zhang, B.; Hou, P.; Zha, J.; Liu, T. Integer-estimable FDMA Model as an Enabler of GLONASS PPP-RTK. J. Geod. 2021, 95, 91. [Google Scholar] [CrossRef]
- Hou, P.; Zhang, B. Decentralized GNSS PPP-RTK. J. Geod. 2023, 97, 72. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, P.; Odolinski, R. PPP-RTK: From common-view to all-in-view GNSS networks. J. Geod. 2022, 96, 102. [Google Scholar] [CrossRef]
- Xue, S.; Yang, Y.; Yang, W. Single-differenced models for GNSS-acoustic seafloor point positioning. J. Geod. 2022, 96, 38. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Hu, L.; Cui, H.; Wang, S. Analysis of the Influence of Attitude Error on Underwater Positioning and Its High-Precision Realization Algorithm. Remote Sens. 2022, 14, 3878. [Google Scholar] [CrossRef]
- Duan, S.; Kang, F.; Wang, Y. Study of Integrated Navigation of AUV based on SINS/DVL/GPS. Fire Control. Command. Control. 2009, 54, 3651–3657. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, X.; Xue, S.; Wang, S. A new underwater positioning model based on average sound speed. J. Navig. 2021, 74, 1009–1025. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Liang, G.; Ma, S. Integrated L/USBL underwater acoustic positioning. Tech. Acoustic. 2017, 36, 309–310. [Google Scholar]
- Font, E.G.; Bonin-Font, F.; Negre, P.L.; Massot, M.; Oliver, G. USBL Integration and Assessment in a Multisensor Navigation Approach for AUVs. IFAC Pap. Line 2017, 50, 7905–7910. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Jin, B.; Zhu, Y.; Tong, J. Student’s t-Based Robust Kalman Filter for a SINS/USBL Integration Navigation Strategy. IEEE Sens. J. 2020, 20, 5540–5553. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Shan, R.; He, K.; Zhao, S. Research into the integrated navigation of a deep-sea towed vehicle with USBL/DVL and pressure gauge. Appl. Acoust. 2020, 159, 107052. [Google Scholar] [CrossRef]
- Liu, Y.; Xue, S.; Qu, G.; Lu, S.; Qi, K. Influence of the ray elevation angle on seafloor positioning precision in the context of acoustic ray tracing algorithm. Appl. Ocean Res. 2020, 105, 102403. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Li, M.; Zhang, L.; Liu, Y.; Liu, J. Review on the processing methods of sound speed errors in GNSS acoustic seafloor positioning. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 1349–1363. [Google Scholar] [CrossRef]
- Wang, J.; Xu, T.; Nie, W.; Yu, X. The Construction of Sound Speed Field Based on Back Propagation Neural Network in the Global Ocean. Mar. Geod. 2020, 43, 621–642. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, Z.; He, K.; Ding, N. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle. Appl. Ocean Res. 2018, 77, 69–77. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X. Aided Strapdown Inertial Navigation for Autonomous Underwater Vehicles. Proc. Spie Int. Soc. Opt. Eng. 2010, 7698, 582–593. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, L.; Li, Y. AUV Underwater Positioning Algorithm Based on Interactive Assistance of SINS and LBL. Sensors 2015, 16, 42. [Google Scholar] [CrossRef] [PubMed]
- D’Spain, G.L.; Chadwell, C.D. DURIP: Side Scan Sonar and Inertial Navigation System for AUV-Based Ocean Bottom/Sub-Bottom Mapping for Object Search/Identification. Environ. Sci. 2009. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, X.; Tang, Q.; Meng, T. Application of underw ater navigation and positioning technologies in oceanic scientific investigation. Hydrogr. Surv. Charting 2021, 41, 65–69. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Liu, Y.; Liu, J. Improving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations. J. Geod. 2020, 94, 61. [Google Scholar] [CrossRef]
- Casalino, A.T.G.; Simetti, E.; Sperindè, A.; Torelli, S. Impact of LBL Calibration on the Accuracy of Underwater Localization. IFAC Proc. Vol. 2014, 47, 3376–3381. [Google Scholar] [CrossRef]
- Qi, K.; Qu, G.; Xue, S.; Xu, T.; Su, X.; Liu, Y.; Wan, J. Analytical optimization on GNSS buoy array for underwater positioning. Acta Oceanol. Sin. 2019, 38, 137–143. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Liu, Y.; Tian, Z.; Li, M. Adjustment of Transceiver Lever Arm Offset and Sound Speed Bias for GNSS-Acoustic Positioning. Remote Sens. 2019, 11, 1606. [Google Scholar] [CrossRef]
- Yang, W.; Xue, S.; Liu, Y. P-Order Secant Method for Rapidly Solving the Ray Inverse Problem of Underwater Acoustic Positioning. Mar. Geod. 2021, 46, 3–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Sun, Y.; Li, B.; Wang, X.; Yang, L. Experimental Analysis of Deep-Sea AUV Based on Multi-Sensor Integrated Navigation and Positioning. Remote Sens. 2024, 16, 199. https://doi.org/10.3390/rs16010199
Liu Y, Sun Y, Li B, Wang X, Yang L. Experimental Analysis of Deep-Sea AUV Based on Multi-Sensor Integrated Navigation and Positioning. Remote Sensing. 2024; 16(1):199. https://doi.org/10.3390/rs16010199
Chicago/Turabian StyleLiu, Yixu, Yongfu Sun, Baogang Li, Xiangxin Wang, and Lei Yang. 2024. "Experimental Analysis of Deep-Sea AUV Based on Multi-Sensor Integrated Navigation and Positioning" Remote Sensing 16, no. 1: 199. https://doi.org/10.3390/rs16010199