Coupling the Calibrated GlobalLand30 Data and Modified PLUS Model for Multi-Scenario Land Use Simulation and Landscape Ecological Risk Assessment
"> Figure 1
<p>Study area. Geographic location of Beijing, the division of the city and its four functional districts.</p> "> Figure 2
<p>Flowchart of land use simulation based on the PLUS Model and landscape ecological risk assessment in Beijing.</p> "> Figure 3
<p>Land use data before and after NDISI calibration in 2000, 2010, and 2020.</p> "> Figure 4
<p>Presentation of land use data by functional areas, 2000–2020: analyses based on the calibrated NDISI.</p> "> Figure 5
<p>Selection of the indicators with the best accuracy by combining the parameter ranges determined by the sensitivity analyses.</p> "> Figure 6
<p>Comparison of spatial distribution of real data and simulation results of land use pattern in 2010 and 2020 ((<b>a</b>,<b>c</b>) are calibrated GlobalLand30 data; (<b>b</b>,<b>d</b>) are the results of the PLUS simulation).</p> "> Figure 7
<p>Analysis of the contribution of various drivers to each land use type (“D-” indicates the closest distance to the road).</p> "> Figure 8
<p>Proportion of area of various land use types in Beijing in 2040, 2060, 2080 and 2100 predicted by Markov.</p> "> Figure 9
<p>Simulation of land use in Beijing under different scenarios based on the PLUS model.</p> "> Figure 10
<p>Spatial distribution of LER in 2000, 2010, and 2020. ((<b>a</b>–<b>c</b>) indicate 2000, 2010, and 2020, respectively).</p> "> Figure 11
<p>Spatial distribution of LER in future under different scenarios.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. The Study Area
2.2. Data
3. Methodology
3.1. The Modified PLUS Model
3.1.1. The PLUS Model
3.1.2. The Modified PLUS Model by Parameter Sensitivity Analysis
3.1.3. Model Validation
3.2. GlobalLand30 Data Calibration
3.3. Land Use Prediction and Multi-Scenario Design
3.4. The Landscape Ecological Risk Index
4. Results
4.1. Calibrated GLC30 Data for PLUS Simulation
4.2. Simulation after Modifying the PLUS Model
4.3. Land Use Simulation and Prediction under Multiple Scenarios
4.4. Spatiotemporal Distribution Characteristics of Landscape Ecological Risks
5. Discussion
5.1. Comparison of Driver Contributions
5.2. Strengths and Limitations
6. Conclusions
- (1)
- The impervious surface correction of GLC30 based on the NDISI significantly improved the connectivity of independent township settlements. The calibrated simulation accuracy was enhanced to greater than 0.86 based on PLUS simulation.
- (2)
- The modified PLUS model by the sensitivity analysis increased the kappa coefficient and the FoM value by more than 1.4% and 3%, respectively, and the overall accuracy reached 87.6%, effectively improving the accuracy of the PLUS simulation.
- (3)
- Based on the modified PLUS model simulation, the cultivated land in three scenarios showed a significant reduction trend, decreasing by 61%, 66.42%, and 45.5%, while the built-up land increased by 63.42%, 86.79%, and 38.9%. Only under the SSP126-EP scenario can both urban construction and the protection of cultivated land be possible.
- (4)
- According to the LER index analysis, the LER in the past 20 years has been mainly lower, moderate, or higher, and the overall level of LER has shown a downward trend. However, under SSP245-ND and SSP585-EG, the overall ecological risk shows the lowest, lower, and moderate levels.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Tratalos, J.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban form, biodiversity potential and ecosystem services. Landsc. Urban Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Tsakiris, G.P.; Loucks, D.P. Adaptive Water Resources Management Under Climate Change: An Introduction. Water Resour. Manag. 2023, 37, 2221–2233. [Google Scholar] [CrossRef]
- Smeraldo, S.; Bosso, L.; Fraissinet, M.; Bordignon, L.; Brunelli, M.; Ancillotto, L.; Russo, D. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 2020, 29, 1959–1976. [Google Scholar] [CrossRef]
- Fraissinet, M.; Ancillotto, L.; Migliozzi, A.; Capasso, S.; Bosso, L.; Chamberlain, D.E.; Russo, D. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landsc. Ecol. 2023, 38, 293–305. [Google Scholar] [CrossRef]
- Vergel-Tovar, C.E. Understanding barriers and opportunities for promoting transit-oriented development with bus rapid transit in Bogot’a and Quito. Land. Use Policy 2023, 132, 106791. [Google Scholar] [CrossRef]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An agent-based approach to model land-use change at a regional scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef]
- Bai, T.; Fan, L.; Song, G.; Song, H.; Ru, X.; Wang, Y.; Zhang, H.; Min, R.; Wang, W. Effects of Land Use/Cover and Meteorological Changes on Regional Climate under Different SSP-RCP Scenarios: A Case Study in Zhengzhou, China. Remote Sens. 2023, 15, 2601. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.P.; Li, X.; Chen, Y.M.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- He, C.Y.; Gao, B.; Huang, Q.X.; Ma, Q.; Dou, Y.Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Env. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Li, B.F.; Shi, X.; Lian, L.S.; Chen, Y.N.; Chen, Z.S.; Sun, X.Y. Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. J. Hydrol. 2020, 584, 124684. [Google Scholar] [CrossRef]
- Avashia, V.; Garg, A.; Dholakia, H. Understanding temperature related health risk in context of urban land use changes. Landsc. Urban Plan. 2021, 212, 104107. [Google Scholar] [CrossRef]
- Zhou, W.Q.; Qian, Y.G.; Li, X.M.; Li, W.F.; Han, L.J. Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landsc. Ecol. 2014, 29, 153–167. [Google Scholar] [CrossRef]
- Mwambo, F.M.; Furst, C.; Nyarko, B.K.; Borgemeister, C.; Martius, C. Maize production and environmental costs: Resource evaluation and strategic land use planning for food security in northern Ghana by means of coupled emergy and data envelopment analysis. Land. Use Policy 2020, 95, 104490. [Google Scholar] [CrossRef]
- Mohammady, M. Land use change optimization using a new ensemble model in Ramian County, Iran. Env. Earth Sci. 2021, 80, 780. [Google Scholar] [CrossRef]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Gong, B.H.; Liu, Z.F. Assessing impacts of land use policies on environmental sustainability of oasis landscapes with scenario analysis: The case of northern China. Landsc. Ecol. 2021, 36, 1913–1932. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Buonincontri, M.P.; Bosso, L.; Smeraldo, S.; Chiusano, M.L.; Pasta, S.; Di Pasquale, G. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of in the Italian lowlands: Evidence from archaeo-anthracology and spatial analyses. Sci. Total Environ. 2023, 877, 162893. [Google Scholar] [CrossRef]
- Wang, Y.S.; Yang, Z.H.; Yu, M.H.; Lin, R.Y.; Zhu, L.; Bai, F.P. Integrating Ecosystem Health and Services for Assessing Ecological Risk and its Response to Typical Land-Use Patterns in the Eco-fragile Region, North China. Env. Manag. 2023, 71, 867–884. [Google Scholar] [CrossRef]
- Li, J.L.; Pu, R.L.; Gong, H.B.; Luo, X.; Ye, M.Y.; Feng, B.X. Evolution Characteristics of Landscape Ecological Risk Patterns in Coastal Zones in Zhejiang Province, China. Sustainability 2017, 9, 584. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Liu, K. A review of ecological security assessment and relevant methods in China. Nat. Ecol. Conserv. 2005, 8, 34–37. [Google Scholar]
- Li, Z.-T.; Yuan, M.-J.; Hu, M.-M.; Wang, Y.-F.; Xia, B.-C. Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration. Ecol. Indic. 2019, 101, 595–602. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.X.; Mao, X.F. Ecological risk assessment of cities on the Tibetan Plateau based on land use/land cover changes—Case study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.; Liu, Y. Spatially explicit assessment of land ecological security with spatial variables and logistic regression modeling in Shanghai, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 2235–2249. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial variations in the relationships between road network and landscape ecological risks in the highest forest coverage region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-temporal pattern analysis of landscape ecological risk assessment based on land use/land cover change in Baishuijiang National nature reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- McEachran, Z.P.; Slesak, R.A.; Karwan, D.L. From skid trails to landscapes: Vegetation is the dominant factor influencing erosion after forest harvest in a low relief glaciated landscape. For. Ecol. Manag. 2018, 430, 299–311. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Env. 2017, 574, 1000–1011. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, P.; Jin, M.; Qi, J. Multi-scenario landscape ecological risk assessment based on Markov–FLUS composite model. Geomat. Nat. Hazards Risk 2021, 12, 1449–1466. [Google Scholar] [CrossRef]
- Ghosh, S.; Chatterjee, N.D.; Dinda, S. Urban ecological security assessment and forecasting using integrated DEMATEL-ANP and CA-Markov models: A case study on Kolkata Metropolitan Area, India. Sustain. Cities Soc. 2021, 68, 102773. [Google Scholar] [CrossRef]
- Hou, Y.; Chen, Y.; Li, Z.; Li, Y.; Sun, F.; Zhang, S.; Wang, C.; Feng, M. Land Use Dynamic Changes in an Arid Inland River Basin Based on Multi-Scenario Simulation. Remote Sens. 2022, 14, 2797. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS Model to Predict and Analyze the Pattern of Ecosystem Carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Qiao, K.; Zhu, W.Q.; Hu, D.Y.; Hao, M.; Chen, S.S.; Cao, S.S. Examining the distribution and dynamics of impervious surface in different function zones in Beijing. J. Geogr. Sci. 2018, 28, 669–684. [Google Scholar] [CrossRef]
- Xu, X. China Annual Spatial Interpolation Dataset of Meteorological Elements. 2022. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=96 (accessed on 1 September 2022). [CrossRef]
- Xu, X. China GDP Spatial Distribution Kilometer Grid Dataset. Data Regist. Publ. Syst. Resour. Environ. Sci. DataCent. Chin. Acad. Sci. 2017, 10, 2017121102. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161–174. [Google Scholar] [CrossRef]
- Francos, A.; Elorza, F.J.; Bouraoui, F.; Bidoglio, G.; Galbiati, L. Sensitivity analysis of distributed environmental simulation models: Understanding the model behaviour in hydrological studies at the catchment scale. Reliab. Eng. Syst. Safe 2003, 79, 205–218. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Pontius, R.G.; Peethambaram, S.; Castella, J.C. Comparison of Three Maps at Multiple Resolutions: A Case Study of Land Change Simulation in Cho Don District, Vietnam. Ann. Assoc. Am. Geogr. 2011, 101, 45–62. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. Isprs J. Photogramm. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Brovelli, M.; Molinari, M.; Hussein, E.; Chen, J.; Li, R. The First Comprehensive Accuracy Assessment of GlobeLand30 at a National Level: Methodology and Results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2007, 27, 3025–3033. [Google Scholar] [CrossRef]
- Balcik, F.B. Determining the impact of urban components on land surface temperature of Istanbul by using remote sensing indices. Env. Monit. Assess. 2014, 186, 859–872. [Google Scholar] [CrossRef]
- Rahnama, M.R. Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016–2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Liang, X.; Zhang, H.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Tian, P.; Cao, L.; Li, J.; Pu, R.; Gong, H.; Li, C. Landscape Characteristics and Ecological Risk Assessment Based on Multi-Scenario Simulations: A Case Study of Yancheng Coastal Wetland, China. Sustainability 2020, 13, 149. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Gong, H.; Pu, R.; Cao, L.; Shao, S.; Shi, Z.; Feng, X.; Wang, L.; Liu, R. Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China. Sustainability 2019, 11, 2817. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Li, E.; Huang, W. Transitions in land use and cover and their dynamic mechanisms in the Haihe River Basin, China. Env. Earth Sci. 2021, 80, 50. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995–2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Homewood, K.; Lambin, E.F.; Coast, E.; Kariuki, A.; Kikula, I.; Kivelia, J.; Said, M.; Serneels, S.; Thompson, M. Long-term changes in Serengeti-Mara wildebeest and land cover: Pastoralism, population, or policies? Proc. Natl. Acad. Sci. USA 2001, 98, 12544–12549. [Google Scholar] [CrossRef]
- He, C. Modelling scenarios of land use change in northern China in the next 50 years. J. Geogr. Sci. 2005, 15, 177. [Google Scholar] [CrossRef]
- Zheng, Q.M.; Weng, Q.H.; Wang, K. Characterizing urban land changes of 30 global megacities using nighttime light time series stacks. Isprs J. Photogramm. 2021, 173, 10–23. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; van Meijl, H. A multi-scale, multi-model approach for analyzing the future dynamics of European land use. Ann. Reg. Sci. 2007, 42, 57–77. [Google Scholar] [CrossRef]
- Jia, S.; Yang, Y. Spatiotemporal and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin. Remote Sens. 2023, 15, 3730. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Z.; Huang, M.; Zhu, D.Y.; Altan, O. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Saltelli, A.; Annoni, P.; Azzini, I.; Campolongo, F.; Ratto, M.; Tarantola, S. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 2010, 181, 259–270. [Google Scholar] [CrossRef]
- Ratto, M.; Tarantola, S.; Saltelli, A. Sensitivity analysis in model calibration: GSA-GLUE approach. Comput. Phys. Commun. 2001, 136, 212–224. [Google Scholar] [CrossRef]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal patterns and modifiable areal unit problems of the landscape ecological risk in coastal areas: A case study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Xu, J.; Kang, J. Comparison of Ecological Risk among Different Urban Patterns Based on System Dynamics Modeling of Urban Development. J. Urban Plan. Dev. 2017, 143, 04016034. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Li, Q.; Zhao, J. A framework designation for the assessment of urban ecological risks. Int. J. Sustain. Dev. World Ecol. 2018, 25, 387–395. [Google Scholar] [CrossRef]
Type | Data | Resolution | Meaning | Data Source |
---|---|---|---|---|
Land use | Land use classification data in 2000, 2010 and 2020 | 30 m | 1 Cultivated land; 2 woodland; 3 grassland; 4 water bodies; 5 built-up land; 6 unused land | 30 m Global land cover data http://www.GlobalLandcover.com/, accessed on 1 September 2022 |
Limiting factor | Fixed rivers, reservoirs, lakes, and slopes greater than 25° in the city | 30 m | The area is off limits to development | GlobeLand30 and ASTER GDEM v3 |
Climate and environmental data | Mean annual precipitation (mm) | 30 m | The average annual precipitation at the location corresponding to the pixel | Resources and Environmental Science and Data Center, CAS [36] http://www.resdc.cn/, accessed on 1 September 2022 |
Mean annual temperature (°C) | 30 m | The average annual temperature at the location corresponding to the pixel | ||
Elevation (m) | 30 m | Topographic elevation condition | ASTER GDEM v3 https://earthdata.nasa.gov/, accessed on 1 September 2022 | |
Slope (°) | 30 m | Topographic slope condition | ||
Social economy data | GDP (10,000 yuan/km2) | 30 m | The GDP value of each pixel location | Resources and Environmental Science and Data Center, CAS [37] http://www.resdc.cn/, accessed on 1 September 2022 |
The number of people/persons | 30 m | The number of people in each pixel’s location | WorldPop https://www.worldpop.org/, accessed on 1 September 2022 | |
The distance to the main road (m), the primary road (m), the secondary road (m), the tertiary road (m), the motorway road (m) and the rail road (m) | 30 m | The nearest Euclidean distance from the pixel geometric center to the road | OpenStreetMap https://www.openstreetmap.org/, accessed on 1 September 2022 |
Type | Year | Overall | Kappa | |
---|---|---|---|---|
GLC30 | 2010 | 0.814 | 0.782 | 0.153 |
2020 | 0.825 | 0.751 | 0.179 | |
GLC30-NDISI | 2010 | 0.86 | 0.797 | 0.155 |
2020 | 0.862 | 0.8 | 0.18 |
Type | Year | Overall | Kappa | |
---|---|---|---|---|
Traditional | 2010 | 0.86 | 0.797 | 0.155 |
2020 | 0.862 | 0.8 | 0.18 | |
After correction | 2010 | 0.867 | 0.826 | 0.224 |
2020 | 0.876 | 0.814 | 0.21 |
Category | 2020 | 2040 | 2060 | 2080 | 2100 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EG | EP | ND | EG | EP | ND | EG | EP | ND | EG | EP | ND | ||
Lowest | 11.47 | 11.77 | 11.47 | 11.58 | 19.96 | 11.63 | 14.95 | 25.82 | 12.34 | 25.87 | 30.49 | 14.15 | 21.41 |
Lower | 31.98 | 30.06 | 31.94 | 30.22 | 34.82 | 29.62 | 33.26 | 34.78 | 29.97 | 34.80 | 33.42 | 31.09 | 36.22 |
Moderate | 23.21 | 24.40 | 22.99 | 24.20 | 24.08 | 24.38 | 24.89 | 21.93 | 25.11 | 21.82 | 20.26 | 25.64 | 23.28 |
Higher | 20.76 | 21.36 | 20.81 | 21.22 | 15.73 | 21.50 | 19.37 | 12.91 | 21.29 | 12.96 | 11.68 | 20.67 | 14.17 |
Highest | 12.57 | 12.41 | 12.80 | 12.77 | 5.40 | 12.87 | 7.53 | 4.56 | 11.29 | 4.56 | 4.14 | 8.45 | 4.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Guo, M.; Zhang, D.; Chen, R.; Xi, C.; Yang, H. Coupling the Calibrated GlobalLand30 Data and Modified PLUS Model for Multi-Scenario Land Use Simulation and Landscape Ecological Risk Assessment. Remote Sens. 2023, 15, 5186. https://doi.org/10.3390/rs15215186
Wang Z, Guo M, Zhang D, Chen R, Xi C, Yang H. Coupling the Calibrated GlobalLand30 Data and Modified PLUS Model for Multi-Scenario Land Use Simulation and Landscape Ecological Risk Assessment. Remote Sensing. 2023; 15(21):5186. https://doi.org/10.3390/rs15215186
Chicago/Turabian StyleWang, Zongmin, Mengdan Guo, Dong Zhang, Ruqi Chen, Chaofan Xi, and Haibo Yang. 2023. "Coupling the Calibrated GlobalLand30 Data and Modified PLUS Model for Multi-Scenario Land Use Simulation and Landscape Ecological Risk Assessment" Remote Sensing 15, no. 21: 5186. https://doi.org/10.3390/rs15215186