Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences
<p>The Dijon study area is in the northeast of France. The right-hand section provides an overview of the near-infrared-blue-green Sentinel-2 image acquired on the day of the year (DOY) 263 in 2019.</p> "> Figure 2
<p>The Zhaosu study area is located in Xinjiang’s northwestern region. The center section provides an overview of the Sentinel-2 image acquired on the DOY 190 in 2020 (with the true-color composition). The top left corner presents local details of parcel geometry.</p> "> Figure 3
<p>Flowchart of contrastive-learning-based time-series feature representation for parcel-based crop classification.</p> "> Figure 4
<p>Type-wise random selection to construct augmented contexts in batch training. Background colors indicate different crop types.</p> "> Figure 5
<p>Results of parcel-based crop mapping using comparative methods in the Dijon study area. (<b>a</b>) presents the whole crop classification using the XGB-FR method, (<b>b</b>,<b>c</b>) present the local details of crop classification from five comparison methods.</p> "> Figure 5 Cont.
<p>Results of parcel-based crop mapping using comparative methods in the Dijon study area. (<b>a</b>) presents the whole crop classification using the XGB-FR method, (<b>b</b>,<b>c</b>) present the local details of crop classification from five comparison methods.</p> "> Figure 6
<p>Confusion matrix for the XGB-FR classification. Light orange, light yellow, light green, and light blue indicate winter crops, spring crops, summer crops, and other crops, respectively.</p> "> Figure 7
<p>Results of parcel-based crop mapping in the Zhaosu study area. (<b>a</b>) presents the whole crop classification using XGB-FR method, (<b>b</b>) and (<b>c</b>) present the local details of crop classification from five comparison methods.</p> "> Figure 7 Cont.
<p>Results of parcel-based crop mapping in the Zhaosu study area. (<b>a</b>) presents the whole crop classification using XGB-FR method, (<b>b</b>) and (<b>c</b>) present the local details of crop classification from five comparison methods.</p> "> Figure 8
<p>Accuracy comparison along the dimension of feature representation.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. The Dijon Study Area
2.2. The Zhaosu Study Area
3. Methodology
3.1. Data Preprocessing
3.1.1. Farmland Parcel Maps
3.1.2. Sentinel-2 Images
3.2. Pixel-Wise Spectral Features
3.2.1. Time-Series Composition
3.2.2. Vegetation Indices
3.3. Parcel-Based Time-Series Features
3.4. Time-Series Feature Representation
3.4.1. Consistency Augmentation
- Type-wise random selection
- Spectral band masking
3.4.2. Type-Wise Contrastive Loss
3.5. Time-Series Classification
3.5.1. XGBoost-Based Classifier
3.5.2. LSTM-Based Classifier
3.6. Performance Evaluation and Comparison
3.6.1. Comparative Methods
3.6.2. Evaluation Metrics
4. Results and Discussion
4.1. Results
4.1.1. Results in Dijon
4.1.2. Results in Zhaosu
4.1.3. Results on Type-Wise Contrastive Learning
4.1.4. Results on Time-Series Composition
4.1.5. Results on the Dimension of Feature Representation
4.1.6. Results on Vegetation Indices
4.2. Discussion
4.2.1. Performance Analysis
4.2.2. Number of Training Samples
4.2.3. Type-Wise Contrastive Learning
4.2.4. Need for Time-Series Composition
4.2.5. Sensitive of the Dimension of Feature Representation
4.2.6. Contributions of Vegetation Indices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Chen, Z.; Tao, Y.; Huang, X.; Gu, X. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Zhang, C.; Di, L.; Lin, L.; Li, H.; Guo, L.; Yang, Z.; Eugene, G.Y.; Di, Y.; Yang, A. Towards automation of in-season crop type mapping using spatiotemporal crop information and remote sensing data. Agric. Syst. 2022, 201, 103462. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Liaghat, S.; Balasundram, S.K. A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 2010, 5, 50–55. [Google Scholar] [CrossRef]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-scale crop mapping based on machine learning and parallel computation with grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef]
- Rußwurm, M.; Körner, M. Self-attention for raw optical satellite time series classification. ISPRS J. Photogramm. Remote Sens. 2020, 169, 421–435. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Luo, J.; Feng, L.; Zhou, X. DCN-based spatial features for improving parcel-based crop classification using high-resolution optical images and multi-temporal SAR data. Remote Sens. 2019, 11, 1619. [Google Scholar]
- Yin, H.; Brandão, A., Jr.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, Y.; Zhang, J.; Hu, T.; Zhao, J.; Li, N.; Chen, Q. A generalized approach based on convolutional neural networks for large area cropland mapping at very high resolution. Remote Sens. Environ. 2020, 247, 111912. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Wang, L.; Hellwich, O.; Chen, C.; Yang, L.; Liu, T.; Luo, G.; Bao, A.; Chen, X. A joint learning Im-BiLSTM model for incomplete time-series Sentinel-2A data imputation and crop classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102762. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Wang, S.; Wu, T.; Feng, L.; Wu, W.; Luo, J.; Zhang, X.; Yan, N. For-backward LSTM-based missing data reconstruction for time-series Landsat images. GIScience Remote Sens. 2022, 59, 410–430. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Yang, X.; Feng, L.; Wu, W.; Wu, T.; Luo, J.; Zhou, X.; Zhang, X. Superpixel-based time-series reconstruction for optical images incorporating SAR data using autoencoder networks. GIScience Remote Sens. 2020, 57, 1005–1025. [Google Scholar] [CrossRef]
- Garioud, A.; Valero, S.; Giordano, S.; Mallet, C. Recurrent-based regression of Sentinel time series for continuous vegetation monitoring. Remote Sens. Environ. 2021, 263, 112419. [Google Scholar] [CrossRef]
- Sun, L.; Gao, F.; Xie, D.; Anderson, M.; Chen, R.; Yang, Y.; Yang, Y.; Chen, Z. Reconstructing daily 30 m NDVI over complex agricultural landscapes using a crop reference curve approach. Remote Sens. Environ. 2021, 253, 112156. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X. Evolution of regional to global paddy rice mapping methods: A review. ISPRS J. Photogramm. Remote Sens. 2016, 119, 214–227. [Google Scholar] [CrossRef]
- Hu, Q.; Sulla-Menashe, D.; Xu, B.; Yin, H.; Tang, H.; Yang, P.; Wu, W. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 218–229. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef]
- Qiu, B.; Luo, Y.; Tang, Z.; Chen, C.; Lu, D.; Huang, H.; Chen, Y.; Chen, N.; Xu, W. Winter wheat mapping combining variations before and after estimated heading dates. ISPRS J. Photogramm. Remote Sens. 2017, 123, 35–46. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Woźniak, E.; Rybicki, M.; Kofman, W.; Aleksandrowicz, S.; Wojtkowski, C.; Lewiński, S.; Bojanowski, J.; Musiał, J.; Milewski, T.; Slesiński, P. Multi-temporal phenological indices derived from time series Sentinel-1 images to country-wide crop classification. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102683. [Google Scholar] [CrossRef]
- Hao, P.; Wang, L.; Zhan, Y.; Wang, C.; Niu, Z.; Wu, M. Crop classification using crop knowledge of the previous-year: Case study in Southwest Kansas, USA. Eur. J. Remote Sens. 2016, 49, 1061–1077. [Google Scholar] [CrossRef]
- Hao, P.; Wu, M.; Niu, Z.; Wang, L.; Zhan, Y. Estimation of different data compositions for early-season crop type classification. PeerJ 2018, 6, e4834. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Shen, H.; Guan, X.; Chen, J.M.; Li, X.; Li, J.; Zhang, L. Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion. Remote Sens. Environ. 2021, 264, 112632. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Yuan, D.; Zhang, S.; Li, H.; Zhang, J.; Yang, S.; Bai, Y. Improving the gross primary productivity estimate by simulating the maximum carboxylation rate of the crop using machine learning algorithms. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Le-Khac, P.H.; Healy, G.; Smeaton, A.F. Contrastive representation learning: A framework and review. IEEE Access 2020, 8, 193907–193934. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Zhang, G.; Liu, R.; Huang, H.; Zhu, Q.; Tao, C. Global and local contrastive self-supervised learning for semantic segmentation of HR remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies 2020, 9, 2. [Google Scholar] [CrossRef]
- Tang, C.I.; Perez-Pozuelo, I.; Spathis, D.; Mascolo, C. Exploring contrastive learning in human activity recognition for healthcare. arXiv 2020, arXiv:2011.11542. [Google Scholar]
- Zeng, Q.; Geng, J. Task-specific contrastive learning for few-shot remote sensing image scene classification. ISPRS J. Photogramm. Remote Sens. 2022, 191, 143–154. [Google Scholar] [CrossRef]
- Rußwurm, M.; Pelletier, C.; Zollner, M.; Lefèvre, S.; Körner, M. Breizhcrops: A time series dataset for crop type mapping. arXiv 2019, arXiv:1905.11893. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.N.; Yang, X.; Feng, L.; Wu, T.; Luo, J. BSNet: Boundary-semantic-fusion network for farmland parcel mapping in high-resolution satellite images. Comput. Electron. Agric. 2023, 206, 107683. [Google Scholar]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Srinivasan, R.; Fedosejevs, G.; Kiniry, J. Evaluating different NDVI composite techniques using NOAA-14 AVHRR data. Int. J. Remote Sens. 2003, 24, 3403–3412. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, T.; Chen, S. Red-edge band vegetation indices for leaf area index estimation from sentinel-2/msi imagery. IEEE Trans. Geosci. Remote Sens. 2019, 58, 826–840. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; Weihs, P.; D’Urso, G. Experimental assessment of the Sentinel-2 band setting for RTM-based LAI retrieval of sugar beet and maize. Can. J. Remote Sens. 2009, 35, 230–247. [Google Scholar] [CrossRef]
- Yue, Z.; Wang, Y.; Duan, J.; Yang, T.; Huang, C.; Tong, Y.; Xu, B. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI Conference on Artificial Intelligence, Online, 22 February–1 March 2022; Volume 36, pp. 8980–8987. [Google Scholar]
- Franceschi, J.-Y.; Dieuleveut, A.; Jaggi, M. Unsupervised scalable representation learning for multivariate time series. Adv. Neural Inf. Process. Syst. 2019, 32, 4650–4661. [Google Scholar]
- Tonekaboni, S.; Eytan, D.; Goldenberg, A. Unsupervised representation learning for time series with temporal neighborhood coding. arXiv 2021, arXiv:2106.00750. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sens. Environ. 2010, 114, 618–625. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Evaluating the utilization of the red edge and radar bands from sentinel sensors for wetland classification. Catena 2019, 178, 109–119. [Google Scholar] [CrossRef]
Area | Dataset | Crop | |||
---|---|---|---|---|---|
Name | Usage | Number | Time | Growth Period | |
Dijon | CAP data | Parcel maps and crop-type samples | / | 2019 | Winter crops: September to July (next) Spring crops: March to August Summer crops: April to September |
Sentinel-2 | Time-series features | 48 images | February to September in 2019 | ||
Zhaosu | GF-1 | Parcel maps | 2 | July 2020 | Rapeseed: May to September |
Sentinel-2 | Time-series features | 72 images | April to September in 2020 | ||
Field samples | Crop type samples | / | July 2020 |
XGB-Clean | LSTM-TS | XGB-TS | LSTM-FR | XGB-FR | |
---|---|---|---|---|---|
OA | 76.92% | 80.95% | 79.81% | 83.94% | 84.52% |
Precision | 56.14% | 65.61% | 63.33% | 72.23% | 73.39% |
Recall | 65.93% | 75.94% | 72.07% | 77.16% | 77.81% |
F1 | 0.6064 | 0.7040 | 0.6741 | 0.7461 | 0.7553 |
XGB-Clear | LSTM-TS | XGB-TS | LSTM-FR | XGB-FR | |
---|---|---|---|---|---|
OA | 92.42% | 95.01% | 94.96% | 96.74% | 96.92% |
F1 | 0.8984 | 0.9307 | 0.9306 | 0.9544 | 0.9570 |
Precision (W/R/O) | 88.79% | 93.10% | 92.81% | 95.57% | 96.16% |
81.35% | 89.50% | 88.67% | 94.26% | 94.74% | |
96.22% | 96.71% | 96.95% | 97.48% | 97.57% | |
Recall (W/R/O) | 90.92% | 93.05% | 93.31% | 95.02% | 95.25% |
88.07% | 89.33% | 90.19% | 91.78% | 92.07% | |
93.76% | 96.76% | 96.44% | 98.27% | 98.42% |
Crop | WWT | WBR | WRP | WTT | SBR | CON | OA | |
---|---|---|---|---|---|---|---|---|
F1 | Inst | 0.8368 | 0.7389 | 0.8667 | 0.4481 | 0.5946 | 0.5904 | 0.8225 |
Type | 0.8470 | 0.7718 | 0.9154 | 0.6633 | 0.6766 | 0.6258 | 0.8467 | |
Crop | SOY | SFL | GRA | AFF | GRS | FLW | F1 (all) | |
F1 | Inst | 0.5249 | 0.5088 | 0.9610 | 0.6447 | 0.9406 | 0.5692 | 0.6943 |
Type | 0.5811 | 0.7130 | 0.9710 | 0.6645 | 0.9407 | 0.7405 | 0.7624 |
5-Day | 10-Day | 20-Day | 30-Day | 40-Day | 60-Day | |
---|---|---|---|---|---|---|
Cloud/shadow | 53.83% | 29.10% | 9.24% | 5.53% | 0.03% | 0.00% |
OA | 84.21% | 82.03% | 81.17% | 77.68% | 77.44% | 74.81% |
F1 | 0.7553 | 0.7089 | 0.6986 | 0.6401 | 0.6392 | 0.5834 |
4-Band | VI | 10-Band | 4 + VI | 10 + VI | |
---|---|---|---|---|---|
OA | 0.7318 | 0.7586 | 0.8449 | 0.8413 | 0.8521 |
F1 | 0.5212 | 0.5903 | 0.7553 | 0.7460 | 0.7654 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, Y.; Yan, N.; Feng, L.; Chen, Y.; Wu, T.; Gao, J.; Zhang, X.; Zhu, W. Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences. Remote Sens. 2023, 15, 5009. https://doi.org/10.3390/rs15205009
Zhou Y, Wang Y, Yan N, Feng L, Chen Y, Wu T, Gao J, Zhang X, Zhu W. Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences. Remote Sensing. 2023; 15(20):5009. https://doi.org/10.3390/rs15205009
Chicago/Turabian StyleZhou, Ya’nan, Yan Wang, Na’na Yan, Li Feng, Yuehong Chen, Tianjun Wu, Jianwei Gao, Xiwang Zhang, and Weiwei Zhu. 2023. "Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences" Remote Sensing 15, no. 20: 5009. https://doi.org/10.3390/rs15205009
APA StyleZhou, Y., Wang, Y., Yan, N., Feng, L., Chen, Y., Wu, T., Gao, J., Zhang, X., & Zhu, W. (2023). Contrastive-Learning-Based Time-Series Feature Representation for Parcel-Based Crop Mapping Using Incomplete Sentinel-2 Image Sequences. Remote Sensing, 15(20), 5009. https://doi.org/10.3390/rs15205009