AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness
<p>Problems that exist in remote sensing object detection when using horizontal bounding boxes. (<b>a</b>) The overlapping phenomenon of anchor boxes when using horizontal bounding boxes to detect objects in aerial images. The green box is the detected horizontal bounding box. (<b>b</b>) The problem where the proportion of target pixels is smaller when using horizontal bounding boxes to detect objects with large aspect ratios in aerial images. The red area in the figure is the target pixel, and the green area is the background pixel.</p> "> Figure 2
<p>Anchor-based detector preset anchor box redundancy. The green boxes in the figure are the preset rotation boxes of the anchor-based detector.</p> "> Figure 3
<p>The overall architecture of the AOGC network, where <span class="html-italic">C</span><sub>3</sub>, <span class="html-italic">C</span><sub>4</sub>, and <span class="html-italic">C</span><sub>5</sub> represent the output features of the backbone, and CAM is the contextual attention module. <span class="html-italic">H</span> and <span class="html-italic">W</span> are the width and height of the feature map, and <span class="html-italic">C</span> is the number of categories in the network classification. OLA is the oriented label assignment method we designed, and Gaussian centerness is a centerness branch based on a two-dimensional Gaussian kernel.</p> "> Figure 4
<p>CAFPN structure diagram. Among them, DConv represents dilated convolution, IP means interpolation operation, and Conv (1 × 1) represents 1 × 1 convolution for channel conversion. (<b>a</b>–<b>c</b>) are the implementation methods of CAFPN three-layer structure respectively.</p> "> Figure 5
<p>The FCOS positive and negative sample division method does not match the OBB detection. The blue area in the figure is the positive sample point area of FCOS, and the red box is the ground truth.</p> "> Figure 6
<p>Oriented label assignment method and its modification for large aspect ratio objects. (<b>a</b>) After reducing the sampling area of the positive sample, the number of positive sample points of the target with a large aspect ratio was noted to be too small. In the figure, the red box is the original sampling area, and the green box is the sampling area reduced by half. (<b>b</b>) The sampling area after correction and the blue area is the sampling area of the positive sample.</p> "> Figure 7
<p>The representation heat map of the Gaussian centerness.</p> "> Figure 8
<p>Partial visualization results of our method on the DOTA-1.0 dataset.</p> "> Figure 9
<p>Partial visualization results of FCOS-R and our method. (<b>a</b>) Part of the visualization results of the FCOS-R method on the DOTA dataset. (<b>b</b>) Part of the visualization results of our method on the DOTA dataset.</p> "> Figure 10
<p>Partial visualization results of our method on the HRSC2016 dataset.</p> ">
Abstract
:1. Introduction
- (1)
- We proposed a new anchor-free detector anchor-free oriented object detection based on Gaussian centerness (AOGC), which uses FCOS as the baseline and adds a detection branch for oriented objects. In addition, our model has a solid ability to detect oriented objects.
- (2)
- We designed an FPN structure based on an attention mechanism that can effectively extract the targets’ contextual information and improve the network’s feature expression ability. This method is suitable for object detection in remote sensing images with more background pixels.
- (3)
- We designed a label assignment method suitable for rotating boxes, which can efficiently divide positive and negative samples as well as adapt to targets with large aspect ratios; secondly, we also designed a Gaussian-based kernel function for oriented detection tasks. The centerness branch is used to determine the significance of different anchor points and improve the detection quality of the network.
- (4)
- Our method achieves mAP of 74.30% and 89.80% on the DOTA and HRSC2016 datasets, respectively. The experimental results show that our method shows substantial improvement compared to the baseline method, surpassing most anchor-free and single-stage oriented object detection approaches.
2. Materials and Methods
2.1. Related Works
2.1.1. Horizontal Object Detection
2.1.2. Oriented Object Detection
2.1.3. Anchor-Free Detection
2.2. Method
2.2.1. Overall Architecture
2.2.2. Contextual Attention FPN (CAFPN)
2.2.3. Oriented Bounding Box Label Assignment (OLA)
2.2.4. Gaussian Centerness Branch (GC)
2.2.5. Loss Function
3. Results
3.1. Datasets
3.2. Implementation Details
3.3. Ablation Studies
3.4. Comparison with State-of-the-Art Methods
4. Discussion
4.1. Effect of the Proposed CAFPN
4.2. Effect of the Proposed Gaussian Kernel Anchor-Free Detection Head
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Wen, L.; Cheng, Y.; Fang, Y.; Li, X.Y. A comprehensive survey of oriented object detection in remote sensing images. Expert Syst. Appl. 2023, 224, 119960. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.-S.; Lu, Q. Learning RoI Transformer for Detecting Oriented Objects in Aerial Images. arXiv 2018, arXiv:1812.00155. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully Convolutional One-Stage Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–4 September 2018. [Google Scholar]
- Zhou, X.; Wang, D.; Krhenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Girshick, R. Fast R-CNN. arXiv 2015, arXiv:1504.08083. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015, arXiv:1506.02640. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Berg, A.C.; Fu, C.Y.; Szegedy, C.; Anguelov, D.; Erhan, D.; Reed, S.; Liu, W. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Ma, J.; Shao, W.; Ye, H.; Wang, L.; Wang, H. Arbitrary-Oriented Scene Text Detection via Rotation Proposals. IEEE Trans. Multimed. 2017, 20, 3111–3122. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, X.; Wang, X.; Yang, S.; Li, W.; Wang, H.; Fu, P.; Luo, Z. R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detection. arXiv 2017, arXiv:1706.09579. [Google Scholar]
- Yang, X.; Liu, Q.; Yan, J.; Li, A.; Zhang, Z.; Yu, G. R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object. arXiv 2019, arXiv:1908.05612. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Xian, S.; Fu, K. SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Han, J.; Ding, J.; Li, J.; Xia, G.S. Align Deep Features for Oriented Object Detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5602511. [Google Scholar] [CrossRef]
- Chen, W.; Miao, S.; Wang, G.; Cheng, G. Recalibrating Features and Regression for Oriented Object Detection. Remote Sens. 2023, 15, 2134. [Google Scholar] [CrossRef]
- Yi, J.; Wu, P.; Liu, B.; Huang, Q.; Qu, H.; Metaxas, D. Oriented Object Detection in Aerial Images with Box Boundary-Aware Vectors. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020. [Google Scholar]
- Wang, J.; Yang, W.; Li, H.C.; Zhang, H.; Xia, G.S. Learning Center Probability Map for Detecting Objects in Aerial Images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4307–4323. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, P.; Guan, J. IENet: Interacting Embranchment One Stage Anchor Free Detector for Orientation Aerial Object Detection. arXiv 2019, arXiv:1912.00969. [Google Scholar]
- Shi, T.; Gong, J.; Hu, J.; Zhi, X.; Zhang, W.; Zhang, Y.; Zhang, P.; Bao, G. Feature-Enhanced CenterNet for Small Object Detection in Remote Sensing Images. Remote Sens. 2022, 14, 5488. [Google Scholar] [CrossRef]
- Ming, Q.; Zhou, Z.; Miao, L.; Zhang, H.; Li, L. Dynamic Anchor Learning for Arbitrary-Oriented Object Detection. arXiv 2020, arXiv:2012.04150. [Google Scholar] [CrossRef]
- Xu, Y.; Fu, M.; Wang, Q.; Wang, Y.; Chen, K.; Xia, G.S.; Bai, X. Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 1452–1459. [Google Scholar] [CrossRef]
- Xiao, Z.; Qian, L.; Shao, W.; Tan, X.; Wang, K. Axis Learning for Orientated Objects Detection in Aerial Images. Remote Sens. 2020, 12, 908. [Google Scholar] [CrossRef]
- Pan, X.; Ren, Y.; Sheng, K.; Dong, W.; Yuan, H.; Guo, X.; Ma, C.; Xu, C. Dynamic Refinement Network for Oriented and Densely Packed Object Detection. arXiv 2020, arXiv:2005.09973. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Y.; Chang, Z.; Li, H.; Wang, H.; Sun, X. Oriented objects as pairs of middle lines. ISPRS J. Photogramm. Remote Sens. 2020, 169, 268–279. [Google Scholar] [CrossRef]
- Llerena, J.M.; Zeni, L.F.; Kristen, L.N.; Jung, C. Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection. arXiv 2021, arXiv:2106.06072. [Google Scholar]
- Chen, Z.; Chen, K.; Lin, W.; See, J.; Yu, H.; Ke, Y.; Yang, C. PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments. arXiv 2020, arXiv:2007.09584. [Google Scholar]
- Liu, L.; Pan, Z.; Lei, B. Learning a Rotation Invariant Detector with Rotatable Bounding Box. arXiv 2017, arXiv:1711.09405. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Xian, S.; Fu, K. R2CNN++: Multi-Dimensional Attention Based Rotation Invariant Detector with Robust Anchor Strategy. arXiv 2018, arXiv:1811.07126. [Google Scholar]
- Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning Modulated Loss for Rotated Object Detection. arXiv 2019, arXiv:1911.08299. [Google Scholar] [CrossRef]
- Yang, X.; Hou, L.; Zhou, Y.; Wang, W.; Yan, J. Dense Label Encoding for Boundary Discontinuity Free Rotation Detection. arXiv 2020, arXiv:2011.09670. [Google Scholar] [CrossRef]
- Ye, X.; Xiong, F.; Lu, J.; Zhou, J.; Qian, Y. 3-Net: Feature Fusion and Filtration Network for Object Detection in Optical Remote Sensing Images. Remote Sens. 2020, 12, 4027. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, S.; Zhang, W. CAD-Net: A Context-Aware Detection Network for Objects in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10015–10024. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, W.; Zhang, T.; Li, J. HRCNet: High-Resolution Context Extraction Network for Semantic Segmentation of Remote Sensing Images. Remote Sens. 2020, 13, 71. [Google Scholar] [CrossRef]
- Hu, G.; Du, B.; Wei, G. HG-SMA: Hierarchical guided slime mould algorithm for smooth path planning. Artif. Intell. Rev. 2023, 56, 9267–9327. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the ICLR, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-scale Dataset for Object Detection in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship Rotated Bounding Box Space for Ship Extraction From High-Resolution Optical Satellite Images With Complex Backgrounds. IEEE Geosci. Remote Sens. Lett. 2017, 13, 1074–1078. [Google Scholar] [CrossRef]
- Everingham, M.; Van Gool, L.; Williams, C.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012, Lake Tahoe, NV, USA, 3–6 December 2012; Volume 25. [Google Scholar]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J. MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Jin, Z.; Yu, D.; Song, L.; Yuan, Z.; Yu, L. You Should Look at All Objects. arXiv 2022, arXiv:2207.07889. [Google Scholar] [CrossRef]
Methods | Backbone | CAFPN | OLA | GC | mAP (%) |
---|---|---|---|---|---|
FCOS-R | ResNet50 | 69.58 | |||
√ | 72.19 | ||||
√ | √ | 73.39 | |||
√ | √ | √ | 74.30 |
Methods | Backbone | AT | HS | OLA | mAP (%) |
---|---|---|---|---|---|
FCOS-R | Resnet50 | 69.58 | |||
√ | 70.44 | ||||
√ | √ | 70.32 | |||
√ | √ | 70.90 |
Method | Backbone | PL | BD | BR | GTF | SV | LV | SH | TC | BC | ST | SBF | RA | HA | SP | HC | mAP (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
One-stage | |||||||||||||||||
Retina-Net-O | R-50 | 88.67 | 77.62 | 41.81 | 58.17 | 74.58 | 71.64 | 79.11 | 90.29 | 82.18 | 74.32 | 54.75 | 60.60 | 62.57 | 69.67 | 60.64 | 68.43 |
S2A-Net [22] | R-50 | 89.11 | 82.84 | 48.37 | 71.11 | 78.11 | 78.39 | 87.25 | 90.83 | 84.90 | 85.64 | 60.36 | 62.60 | 65.26 | 69.13 | 57.94 | 74.12 |
DAL [28] | R-50 | 88.68 | 76.55 | 45.08 | 66.80 | 67.00 | 76.76 | 79.74 | 90.84 | 79.54 | 78.45 | 57.71 | 62.27 | 69.05 | 73.14 | 60.11 | 71.44 |
R3Det [20] | R-101 | 88.76 | 83.09 | 50.91 | 67.27 | 76.23 | 80.39 | 86.72 | 90.78 | 84.68 | 83.24 | 61.98 | 61.35 | 66.91 | 70.63 | 53.94 | 73.79 |
Two-stage | |||||||||||||||||
RRPN [18] | R-101 | 88.52 | 71.20 | 31.66 | 59.30 | 51.85 | 56.19 | 57.25 | 90.81 | 72.84 | 67.38 | 56.69 | 52.84 | 53.08 | 51.94 | 53.58 | 61.01 |
RoI transformer [3] | R-101 | 88.64 | 78.52 | 43.44 | 75.92 | 68.81 | 73.68 | 83.59 | 90.74 | 77.27 | 81.46 | 58.39 | 53.54 | 62.83 | 58.93 | 47.67 | 69.56 |
SCRDet [21] | R-101 | 89.98 | 80.65 | 52.09 | 68.36 | 68.36 | 60.32 | 72.41 | 90.85 | 87.94 | 86.86 | 65.02 | 66.68 | 66.25 | 68.24 | 65.21 | 72.61 |
EDA [23] | R-50 | 89.2 | 83.5 | 51.6 | 69.3 | 77.6 | 74.9 | 86.3 | 90.9 | 85.6 | 85.9 | 59.5 | 64.8 | 68.1 | 66.4 | 57.3 | 74.1 |
Gliding Vertex [29] | R-101 | 89.64 | 85.00 | 52.26 | 77.34 | 73.01 | 73.14 | 86.82 | 90.74 | 79.02 | 86.81 | 59.55 | 70.91 | 72.94 | 70.86 | 57.32 | 75.02 |
Anchor-free | |||||||||||||||||
IENet [26] | R-101 | 88.15 | 71.38 | 34.26 | 51.78 | 63.78 | 65.63 | 71.61 | 90.11 | 71.07 | 73.63 | 37.62 | 41.52 | 48.07 | 60.53 | 49.53 | 61.24 |
Axis learning [30] | R-101 | 79.53 | 77.15 | 38.59 | 61.15 | 67.53 | 70.49 | 76.30 | 89.66 | 79.07 | 83.53 | 47.27 | 61.01 | 56.28 | 66.06 | 36.05 | 65.98 |
BBAVectors [24] | R-101 | 88.35 | 79.96 | 50.69 | 62.18 | 78.43 | 78.98 | 87.94 | 90.85 | 83.58 | 84.35 | 54.13 | 60.24 | 65.22 | 64.28 | 55.70 | 72.32 |
DRN [31] | H-104 | 88.91 | 80.22 | 43.52 | 63.35 | 73.48 | 70.69 | 84.94 | 90.14 | 83.85 | 84.11 | 50.12 | 58.41 | 67.62 | 68.60 | 52.50 | 70.70 |
O2-DNet [32] | H-104 | 89.31 | 82.14 | 47.33 | 61.21 | 71.32 | 74.03 | 78.62 | 90.76 | 82.23 | 81.26 | 60.93 | 60.17 | 58.21 | 66.98 | 61.03 | 71.04 |
ProbIoU [33] | R-50 | 89.09 | 72.15 | 46.92 | 62.22 | 75.78 | 74.70 | 86.62 | 89.59 | 78.35 | 83.15 | 55.83 | 64.01 | 65.50 | 65.46 | 46.32 | 70.04 |
AOGC (ours) | R-50 | 84.04 | 80.61 | 52.22 | 67.23 | 80.64 | 81.75 | 87.81 | 90.91 | 82.81 | 84.91 | 56.55 | 65.73 | 73.50 | 72.50 | 53.32 | 74.30 |
AOGC * (ours) | R-50 | 83.44 | 80.29 | 54.06 | 70.90 | 81.52 | 83.42 | 88.24 | 90.88 | 83.02 | 86.84 | 60.34 | 64.90 | 75.36 | 80.23 | 64.80 | 76.55 |
Method | Backbone | mAP (07) | mAP (12) |
---|---|---|---|
R2CNN [19] | R-101 | 73.07 | 79.73 |
RRPN [18] | R-101 | 79.08 | 85.64 |
Axis Learning [30] | R-101 | 78.20 | - |
BBAVectors [24] | R-101 | 88.60 | - |
PIoU [34] | DLA-34 | 89.20 | - |
RoI Transformer [3] | R-101 | 86.20 | - |
DAL [28] | R-101 | 88.60 | - |
EDA [23] | R-50 | 89.13 | - |
S2A-Net [22] | R-101 | 90.17 | 95.01 |
AOGC (ours) | R-50 | 89.80 | 95.20 |
Method | Backbone | Neck | mAP (%) | Params (MB) | FLOPs (GB) |
---|---|---|---|---|---|
Baseline | ResNet50 | FPN | 69.58 | 206.91 | 31.92 |
Proposed Method | CAFPN | 72.19 | 220.74 | 35.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Bao, C.; Cao, J.; Hao, Q. AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness. Remote Sens. 2023, 15, 4690. https://doi.org/10.3390/rs15194690
Wang Z, Bao C, Cao J, Hao Q. AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness. Remote Sensing. 2023; 15(19):4690. https://doi.org/10.3390/rs15194690
Chicago/Turabian StyleWang, Zechen, Chun Bao, Jie Cao, and Qun Hao. 2023. "AOGC: Anchor-Free Oriented Object Detection Based on Gaussian Centerness" Remote Sensing 15, no. 19: 4690. https://doi.org/10.3390/rs15194690