Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle
<p>Fiducial markers according to <math display="inline"><semantics><mrow><mi>N</mi><mo>×</mo><mi>N</mi></mrow></semantics></math> size.</p> "> Figure 2
<p>Schematic diagram of cable tension estimation.</p> "> Figure 3
<p>Marker detection results. (<b>a</b>) Automated RoI selection of the marker with marker ID, (<b>b</b>) feature point extraction in the RoI.</p> "> Figure 4
<p>Procedures of cable tension estimation using the vibration method.</p> "> Figure 5
<p>Experimental setup for dynamic response acquisition.</p> "> Figure 6
<p>Results of shaking table test (2 Hz) (<b>a</b>) Displacement time–history; (<b>b</b>) power spectrum result.</p> "> Figure 7
<p>Power spectrum for various excitation frequencies (<b>a</b>) 4 Hz, (<b>b</b>) 6 Hz, (<b>c</b>) 8 Hz, (<b>d</b>) 10 Hz.</p> "> Figure 8
<p>Cable test setup.</p> "> Figure 9
<p>Displacement time history (Impact case) (<b>a</b>) 50 FPS, (<b>b</b>) 50 FPS (filtered), (<b>c</b>) 120 FPS, (<b>d</b>) 120 FPS (filtered).</p> "> Figure 10
<p>Displacement time history (sinusoidal excitation case) (<b>a</b>) 50 FPS, (<b>b</b>) 50 FPS (filtered), (<b>c</b>) 120 FPS, (<b>d</b>) 120 FPS (filtered).</p> "> Figure 11
<p>Peak-picking result with regard to the PSD response.</p> "> Figure 12
<p>Linear regression result.</p> "> Figure 13
<p>Comparison of tension estimation results of the sensor-based conventional method and the proposed method.</p> ">
Abstract
:1. Introduction
2. Research Background
2.1. ArUco Marker
2.2. Vibration Method for Cable Tension Estimation
3. Cable Tension Estimation Using a UAV
3.1. RoI Selection by ArUco Marker
3.2. Vision-Based Displacement Transformation Method
3.3. Cable Tension Estimation Using the Vibration Method
4. Experimental Validation
4.1. Dynamic Response Acquisition Using Shaking Table Test
4.2. Cable Tension Estimation Using Lab-Scale Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jung, H.J.; Kim, I.H.; Koo, J.H. A multi-functional cable-damper system for vibration mitigation, tension estimation and energy harvesting. Smart Struct. Syst. 2011, 7, 379–392. [Google Scholar]
- Nazarian, E.; Ansari, F.; Azari, J. Recursive optimization method for monitoring of tension loss in cables of cable-stayed bridge. J. Intell. Mater. Syst. Struct. 2016, 27, 2091–2101. [Google Scholar]
- Bao, Y.; Shi, Z.; Becki, J.L.; Li, H.; Hou, T. Identification of time-varying cable tension forces based on adaptive sparse time-frequency analysis of cable vibrations. Struct. Control Health Monit. 2017, 24, e1889. [Google Scholar]
- Casas, J.R. A combined method for measuring cable forces: The cable-stayed Alamillo Bridge, Spain. Struct. Eng. Int. 1994, 4, 235–240. [Google Scholar]
- Kim, B.H.; Park, T. Estimation of cable tension force using the frequency-based system identification method. J. Sound Vib. 2007, 304, 660–676. [Google Scholar]
- Zui, H.; Shinke, T.; Namita, Y. Practical formulas for estimation of cable tension by vibration method. J. Struct. Eng. 1996, 122, 651–656. [Google Scholar]
- Russel, J.C.; Lardner, T.J. Experimental determination of frequencies and tension for elastic cables. J. Eng. Mech. 1998, 124, 1067–1072. [Google Scholar]
- Shimada, T. Estimating method of cable tension from natural frequency of high mode. In Proceedings of the Japan Society of Civil Engineers, Doboku Gakkai Ronbunshu, Japan, 21 October 1994; pp. 163–171. [Google Scholar]
- Fang, Z.; Wang, J. Practical formula for cable tension estimation by vibration method. J. Bridge Eng. 2012, 17, 161–164. [Google Scholar]
- Gentile, C. Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables. Remote Sens. 2010, 2, 36–51. [Google Scholar]
- Gentile, C.; Cabboi, A. Vibration-based structural health monitoring for stay cables by microwave remote sensing. Smart Struct. Syst. 2015, 16, 263–280. [Google Scholar]
- Zhao, W.; Zhang, G.; Zhang, J. Cable force estimation of a long-span cable-stayed bridge with microwave interferometric radar. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 1419–1433. [Google Scholar]
- Cunha, A.; Caetano, E. Dynamic measurements on stay cables of cable-stayed bridge using an interferometry laser system. Exp. Tech. 1999, 23, 38–43. [Google Scholar]
- Nassif, H.H.; Gindy, M.; Divis, J. Comparison of laser doppler vibrometer with contact sensors for monitoring bridge deflection and vibration. NDT&E Int. 2005, 38, 213–218. [Google Scholar]
- Feng, D.; Scarangello, T.; Feng, M.Q.; Ye, Q. Cable tension force estimate using novel noncontact vision-based sensor. Measurement 2017, 99, 44–52. [Google Scholar]
- Kim, S.W.; Jeon, B.G.; Kim, N.S.; Park, J.C. Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge. Struct. Health Monit. 2013, 12, 440–456. [Google Scholar]
- Kim, S.W.; Jeon, B.G.; Cheung, J.H.; Kim, S.D.; Park, J.C. Stay cable tension estimation using a vision-based monitoring system under various weather conditions. J. Civ. Struct. Health Monit. 2017, 7, 343–357. [Google Scholar]
- Ji, Y.; Chang, C. Nontarget image-based technique for small cable vibration measurement. J. Bridge Eng. 2008, 13, 34–42. [Google Scholar]
- Lee, G.; Kim, S.; Ahn, S.; Kim, H.K.; Yoon, H. Vision-Based Cable Displacement Measurement Using Side View Video. Sensors 2022, 22, 962. [Google Scholar] [PubMed]
- Chu, C. Cable Tension Monitoring Using Non-Contact Vision-Based Techniques. Master’s Dissertation, University of Windsor, Windsor, ON, Canada, 2020. [Google Scholar]
- Kalybek, M.; Bocian, M.; Pakos, W.; Grosel, J.; Nikitas, N. Performance of Camera-based vibration monitoring systems in input-output modal identification using shaker excitation. Remote Sens. 2021, 13, 3471. [Google Scholar]
- Ghyabi, M.; Timber, L.C.; Jahangiri, G.; Lattanzi, D.; Shenton, H.W., III; Chajes, M.J.; Head, M.H. Vision-based measurements to quantify bridge deformations. J. Bridge Eng. 2022, 28, 05022010. [Google Scholar]
- Shan, J.; Liu, Y.; Cui, X.; Wu, H.; Loong, C.N.; Wei, Z. Multi-level deformation behavior monitoring of flexural structures via vision-based continuous boundary tracking: Proof-of-concept study. Measurement 2022, 194, 111031. [Google Scholar]
- Wang, J.; Zhao, J.; Liu, Y.; Shan, J. Vision-based displacement and joint rotation tracking of frame structure using feature mix with single consumer-grade camera. Struct. Control Health Monit. 2021, 28, e2832. [Google Scholar]
- Yoon, H.; Hoskere, V.; Park, J.W.; Spencer, B.F., Jr. Cross-Correlation-Based Structural System Identification Using Unmanned Aerial Vehicles. Sensors 2017, 17, 2075. [Google Scholar]
- Kim, I.H.; Jeon, H.; Baek, S.C.; Hong, W.H.; Jung, H.J. Application of crack identification techniques for an aging concrete bridge inspection using an unmanned aerial vehicle. Sensors 2018, 18, 1881–1894. [Google Scholar] [PubMed] [Green Version]
- Jung, H.J.; Lee, J.H.; Yoon, S.; Kim, I.H. Bridge inspection and condition assessment using unmanned aerial vehicles (UAVs): Major challenges and solutions from a practical perspective. Smart Struct. Syst. 2019, 24, 669–681. [Google Scholar]
- Lovelace, B.; Zink, J. Unmanned Aerial Vehicle Bridge Inspection Demonstration Project; Report No. MN/RC 2015-40; Minnesota Department of Transportation Research Services & Library: St. Paul, MN, USA, 2015.
- Kim, I.H.; Yoon, S.; Lee, J.H.; Jung, S.; Cho, S.; Jung, H.J. A comparative study of bridge inspection and condition assessment between manpower and a UAS. Drones 2022, 6, 355–372. [Google Scholar]
- Lee, J.H.; Yoon, S.; Kim, B.; Gwon, G.H.; Kim, I.H.; Jung, H.J. A new image-quality evaluating and enhancing methodology for bridge inspection using an unmanned aerial vehicle. Smart Struct. Syst. 2021, 27, 209–226. [Google Scholar]
- Gwon, G.H.; Lee, J.H.; Kim, I.H.; Jung, H.J. CNN-based image quality classification considering quality degradation in bridge inspection using an unmanned aerial vehicle. IEEE Access 2023, 11, 22096–22113. [Google Scholar]
- Tian, Y.; Zhang, C.; Jiang, S.; Duan, W. Noncontact cable force estimation with unmanned aerial vehicle and computer vision. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 73–88. [Google Scholar]
- Jang, S.; Jo, H.; Cho, S.; Mechitov, K.; Rice, J.A.; Sim, S.H.; Jung, H.J.; Yun, C.B.; Spencer, B.F., Jr.; Agha, G. Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Struct. Syst. 2010, 6, 439–459. [Google Scholar]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Detection of ArUco Marker 4.7.0-dev. Available online: https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html (accessed on 29 June 2023).
- Irvine, H.M. Cable Structures; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Ni, Y.Q.; Ko, J.M.; Zheng, G. Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity. J. Sound Vib. 2002, 257, 301–319. [Google Scholar] [CrossRef]
- Lucas, B.D.; Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; pp. 674–679. [Google Scholar]
- Tomasi, C.; Kanade, T. Detection and tracking of point features. Pattern Recognit. 2004, 37, 165–168. [Google Scholar]
- Perez, M.; Billon, K.; Gerges, T.; Capsal, J.F.; Cabrera, M.; Chesené, S.; Jean-Mistral, C. Vibration energy harvesting on a drone quadcopter based on piezoelectric structures. Mech. Ind. 2022, 23, 674–679. [Google Scholar]
- Chen, C.C.; Wu, W.H.; Liu, Y.T.; Lai, G. A convenient cable tension estimation method simply based on local vibration measurements to fit partial mode shapes. Eng. Struct. 2022, 272, 115008. [Google Scholar] [CrossRef]
- Furukawa, A.; Hirose, K.; Kobayashi, R. Tension estimation method for cable with damper using natural frequencies. Front. Built Environ. 2021, 7, 603857. [Google Scholar] [CrossRef]
- Jung, H.Y. Feasibility Study of Multifunctional Electromagnetic Damper for Vibration Control of Cable and Energy Harvesting. Ph.D. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea, 2018. [Google Scholar]
- Kim, N.S.; Jeong, W.; Seo, J.W.; Ahn, S.S. Development of cable excitation system for evaluating dynamic characteristics of stay cables. J. Earthq. Eng. Soc. Korea 2003, 7, 71–79. [Google Scholar]
- Nyquist-Shannon Sampling Theorem. Available online: https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem (accessed on 29 June 2023).
- Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Kim, H.; Sim, S.H. Automated peak picking using region-based convolutional neural network for operational modal analysis. Struct. Control Health Monit. 2019, 21, e2436. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Cable length (L) | 11.8 m |
Cable mass per unit length (W) | 4.229 kg/m |
Cable section area (A) | 0.0014 m |
Cable diameter (D) | 42.2 mm |
Inclination angle () | 18.72 |
Mode (n) | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Natural frequency (Hz) | 3.28 | 6.68 | 9.96 | 13.24 | 16.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.-H.; Jung, H.-J.; Yoon, S.; Park, J.W. Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sens. 2023, 15, 4000. https://doi.org/10.3390/rs15164000
Kim I-H, Jung H-J, Yoon S, Park JW. Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing. 2023; 15(16):4000. https://doi.org/10.3390/rs15164000
Chicago/Turabian StyleKim, In-Ho, Hyung-Jo Jung, Sungsik Yoon, and Jong Woong Park. 2023. "Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle" Remote Sensing 15, no. 16: 4000. https://doi.org/10.3390/rs15164000