Meteorological Satellite Observations Reveal Diurnal Exceedance of Water Quality Guideline Thresholds in the Coastal Great Barrier Reef
<p>Mainland Natural Resource Management (NRM) regions and catchments draining to the Great Barrier Reef (<b>left</b> panel), Australia. Detailed relief map of the Herbert River catchment area, including the Herbert River watercourse and the Lucinda Jetty Coastal Observatory (LJCO) location (<b>right</b> panel).</p> "> Figure 2
<p>True colour composites of Sentinel-2A (<b>a</b>) and 2B (<b>b</b>) Multi-Spectral Instrument observations at 10 m resolution were acquired on the 7 and 12 July 2022 (<b>a</b> and <b>b</b>, respectively) at around 10:30 am local time. The location of the Lucinda Jetty Coastal Observatory (LJCO) site is indicated within the red rectangle. Image courtesy of the European Space Agency.</p> "> Figure 3
<p>Marine Water Bodies delineation for the Enclosed Coastal, Open Coastal, Midshelf, and Offshore waters of the Great Barrier Reef Marine Park. The location of the LJCO is indicated. Data sourced from the Great Barrier Reef Marine Park Authority Database.</p> "> Figure 4
<p>The linear relationship between gravimetric Total Suspended Solids (TSS) and nearly-concurrent particulate backscattering (<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math> at 595 nm) data measured at the Lucinda Jetty Coastal Observatory (LJCO). The dashed lines represent the relationship computed in the present study (black) and in Soja-Woźniak et al. [<a href="#B42-remotesensing-15-02335" class="html-bibr">42</a>] (green). The error bars represent the standard deviations of in situ triplicate gravimetric TSS.</p> "> Figure 5
<p>Herbert River daily mean discharge levels in Megaliters per day (ML/day) between September 2017 and September 2018. Data were acquired from the Herbert River gauge station at Ingham (Site n° 116001F at 18.63°S, 146.14°E), distant 30.5 km from the stream mouth [<a href="#B79-remotesensing-15-02335" class="html-bibr">79</a>].</p> "> Figure 6
<p>Webcam images of the Herbert River plume arriving at the LJCO during April and May selected time series. Hinchinbrook Island is visible on the left edge of the pictures. The corresponding median and standard deviation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> <mrow> <mi>H</mi> <mn>8</mn> </mrow> </msub> </mrow> </semantics></math> (mg L<sup>−1</sup>) is annotated for the time of the plume’s arrival at LJCO.</p> "> Figure 7
<p>Comparison between monthly <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> </mrow> <mrow> <mo>Δ</mo> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> </msub> </mrow> </semantics></math> (<b>a</b>) and median TSS values (<b>b</b>) at LJCO and in the GBR lagoon for September 2017.</p> "> Figure 8
<p>Time series of 10 min <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> <mrow> <mi>H</mi> <mn>8</mn> </mrow> </msub> </mrow> </semantics></math> (dark orange) and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> <mrow> <msub> <mrow> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>p</mi> </mrow> </msub> </mrow> </msub> </mrow> </semantics></math> (green) for April (<b>a</b>,<b>b</b>) and May (<b>c</b>,<b>d</b>) 2018 at the LJCO. Peak TSS are annotated with large markers. The MODISA-NAP value (purple star), and Sentinel-3A OLCI, SNPP, and JPPS VIIRS overpasses are annotated as vertical dashed lines. The time of plume arrival derived from webcam observations (grey shading) and the hourly tidal height (light blue) were included. Error bars represent the standard deviation of each TSS measurement.</p> "> Figure 9
<p>Hourly Himawari-8 TSS over the LJCO from 8 am to 4 pm local time (AEST) on 26 April 2018 (April #2, <b>top</b> panel) and on 12 May 2018 (May #2, <b>bottom</b> panel). Emerged surfaces are masked in grey, while clouds and nearshore areas are masked in black. The cross marker indicates the location of the LJCO facility. The time range annotated in each plot refers to the interval of observations utilized for hourly aggregation of Himawari-8 observations.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> </mrow> <mrow> <mo>Δ</mo> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> </msub> </mrow> </semantics></math> at the LJCO for wet and dry seasons between 2017 and 2018. Land, shallow waters and reef areas, unavailable observations, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi mathvariant="normal">M</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> </mrow> <mrow> <mo>Δ</mo> <mi mathvariant="normal">T</mi> <mi mathvariant="normal">S</mi> <mi mathvariant="normal">S</mi> </mrow> </msub> </mrow> </semantics></math> lower than 0.25 mg L<sup>−1</sup> are masked in grey. The delineation of the Marine Water Bodies (enclosed, open coastal, mid-shelf, and offshore) is represented with magenta contour lines.</p> "> Figure 11
<p>Percentage frequency where TSS > 2 mg L<sup>−1</sup> between 2017 and 2018. Land, shallow waters, and reef areas are masked in grey. The delineation of the Marine Water Bodies (enclosed, open coastal, mid-shelf, and offshore) is represented with magenta contour lines. The maximum number of valid observations recorded is annotated on each map.</p> "> Figure 12
<p>Total valid observations computed by pixel. A valid observation is free from clouds, sun glint masking, and out-of-range ANN flags. Land and reef areas are masked in grey. The delineation of the Marine Water Bodies (enclosed, open coastal, mid-shelf, and offshore) is represented with contour lines. The maximum number of valid observations recorded is annotated on each map.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. The Lucinda Jetty Coastal Observatory
2.2. Water Quality Guideline Threshold Values for the Great Barrier Reef Marine Park
2.3. Modelling the Total Suspended Solids from Particulate Backscattering Data
2.4. Total Suspended Solids Retrievals from Himawari-8 AHI
2.5. Time Series of Himawari-8 and In Situ TSS
2.6. Monthly Maximum Diurnal Variability of TSS
2.7. Frequency Exceedance of TSS above GBR Guideline Thresholds
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Great Barrier Reef Marine Park Authority. Nomination of the Great Barrier Reef by the Commonwealth of Australia for Inclusion in the World Heritage List; Great Barrier Reef Marine Park Authority: Townsville, Australia, 1981. [Google Scholar]
- Great Barrier Reef Marine Park Authority. The Great Barrier Reef Marine Park Act; Great Barrier Reef Marine Park Authority: Townsville, Australia, 1975. [Google Scholar]
- Hughes, T.; Kerry, J.; Simpson, T. Large scale bleaching of corals on the Great Barrier Reef. Ecology 2018, 99, 501. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.P.; Kerry, J.T.; Baird, A.H.; Connolly, S.R.; Dietzel, A.; Eakin, C.M.; Heron, S.F.; Hoey, A.S.; Hoogenboom, M.O.; Liu, G. Global warming transforms coral reef assemblages. Nature 2018, 556, 492–496. [Google Scholar] [CrossRef]
- Waterhouse, J.; Brodie, J.; Tracey, D.; Smith, R.; VanderGragt, M.; Collier, C.; Petus, C.; Baird, M.; Kroon, F.; Mann, R. 2017 Scientific Consensus Statement: Land Use Impacts on the Great Barrier Reef Water Quality and Ecosystem Condition, Chapter 3: The Risk from Anthropogenic Pollutants to Great Barrier Reef Coastal and Marine Ecosystems. 2017. Available online: https://www.reefplan.qld.gov.au/science-and-research/the-scientific-consensus-statement (accessed on 8 March 2023).
- Wolff, N.H.; Mumby, P.J.; Devlin, M.; Anthony, K.R. Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob. Change Biol. 2018, 24, 1978–1991. [Google Scholar] [CrossRef] [Green Version]
- Brodie, J.; Grech, A.; Pressey, B.; Day, J.; Dale, A.; Morrison, T.; Wenger, A. The future of the Great Barrier Reef: The water quality imperative. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 477–499. [Google Scholar] [CrossRef]
- Fabricius, K.E.; Logan, M.; Weeks, S.; Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 2014, 84, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Devlin, M.; Schroeder, T.; McKinna, L.; Brodie, J.; Brando, V.; Dekker, A. Monitoring and Mapping of Flood Plumes in the Great Barrier Reef Based on In Situ and Remote Sensing Observations. In Advances in Environmental Remote Sensing to Monitor Global Changes; Chang, N.-B., Ed.; Environmental Remote Sensing and Systems Analysis; CRC Press: Boca Raton, FL, USA, 2012; pp. 147–191. [Google Scholar] [CrossRef]
- Schroeder, T.; Devlin, M.J.; Brando, V.E.; Dekker, A.G.; Brodie, J.E.; Clementson, L.A.; McKinna, L. Inter-annual variability of wet season freshwater plume extent into the Great Barrier Reef lagoon based on satellite coastal ocean colour observations. Mar. Pollut. Bull. 2012, 65, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Kroon, F.J.; Thorburn, P.; Schaffelke, B.; Whitten, S. Towards protecting the Great Barrier Reef from land-based pollution. Glob. Change Biol. 2016, 22, 1985–2002. [Google Scholar] [CrossRef] [Green Version]
- Bainbridge, Z.; Lewis, S.; Bartley, R.; Fabricius, K.; Collier, C.; Waterhouse, J.; Garzon-Garcia, A.; Robson, B.; Burton, J.; Wenger, A.; et al. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar. Pollut. Bull. 2018, 135, 1205–1220. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, J.; Lønborg, C.; Logan, M.; Petus, C.; Tracey, D.; Lewis, S.; Howley, C.; Harper, E.-L.; Tonin, H.; Skuza, M.; et al. Marine Monitoring Program: Annual Report for Inshore Water Quality Monitoring 2016–2017; Report for the Great Barrier Reef Marine Park Authority Townsville. Great Barrier Reef Marine Park Authority: Townsville, Australia, 2018. Available online: https://10.13140/RG.2.2.17525.52964 (accessed on 8 March 2023).
- Furnas, M. Catchment and Corals: Terrestrial Runoff to the Great Barrier Reef; Australian Institute of Marine Science: Townsville, Australia, 2003. [Google Scholar]
- Lough, J.M. Variations of sea-surface temperatures off north-eastern Australia and associations with rainfall in Queensland: 1956–1987. Int. J. Climatol. 1992, 12, 765–782. [Google Scholar] [CrossRef]
- Bartley, R.; Waters, D.; Turner, R.; Kroon, F.; Garzon-Garcia, A.; Kuhnert, P.; Lewis, S.; Smith, R.; Bainbridge, Z.; Olley, J. 2017 Scientific Consensus Statement: Land Use Impacts on the Great Barrier Reef Water Quality and Ecosystem Condition, Chapter 2: Sources of Sediment, Nutrients, Pesticides and Other Pollutants to the Great Barrier Reef. 2017. Available online: https://www.reefplan.qld.gov.au/science-and-research/the-scientific-consensus-statement (accessed on 8 March 2023).
- Lewis, S.E.; Bartley, R.; Wilkinson, S.N.; Bainbridge, Z.T.; Henderson, A.E.; James, C.S.; Irvine, S.A.; Brodie, J.E. Land use change in the river basins of the Great Barrier Reef, 1860 to 2019: A foundation for understanding environmental history across the catchment to reef continuum. Mar. Pollut. Bull. 2021, 166, 112193. [Google Scholar] [CrossRef]
- Pringle, A.W. Causes and Effects of Changes in Fluvial Sediment Yield to the North-East Queensland Coast, Australia; Department of Geography, James Cook University of North Queensland: Townsville, Australia, 1986. Available online: https://nla.gov.au/nla.cat-vn2368172 (accessed on 23 April 2023).
- Bartley, R.; Thompson, C.; Croke, J.; Pietsch, T.; Baker, B.; Hughes, K.; Kinsey-Henderson, A. Insights into the history and timing of post-European land use disturbance on sedimentation rates in catchments draining to the Great Barrier Reef. Mar. Pollut. Bull. 2018, 131, 530–546. [Google Scholar] [CrossRef]
- McCulloch, M.; Fallon, S.; Wyndham, T.; Hendy, E.; Lough, J.; Barnes, D. Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 2003, 421, 727–730. [Google Scholar] [CrossRef] [PubMed]
- McKergow, L.A.; Prosser, I.P.; Hughes, A.O.; Brodie, J. Regional scale nutrient modelling: Exports to the Great Barrier Reef World Heritage Area. Mar. Pollut. Bull. 2005, 51, 186–199. [Google Scholar] [CrossRef]
- Kroon, F.J.; Kuhnert, P.M.; Henderson, B.L.; Wilkinson, S.N.; Kinsey-Henderson, A.; Abbott, B.; Brodie, J.E.; Turner, R.D. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Mar. Pollut. Bull. 2012, 65, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 2005, 50, 125–146. [Google Scholar] [CrossRef] [PubMed]
- De’ath, G.; Fabricius, K.E.; Sweatman, H.; Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 2012, 109, 17995–17999. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, G.F.; Jones, R.J.; Clode, P.L.; Humanes, A.; Negri, A.P. Suspended sediments limit coral sperm availability. Sci. Rep. 2015, 5, 18084. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.Y.Y.; Chaloupka, M.; Thompson, A.; Doropoulos, C.; Mumby, P.J. Acute drivers influence recent inshore Great Barrier Reef dynamics. Proc. R. Soc. B Biol. Sci. 2018, 285, 20182063. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, J.-C.; Wolff, N.H.; Anthony, K.R.; Devlin, M.; Lewis, S.; Mumby, P.J. Impaired recovery of the Great Barrier Reef under cumulative stress. Sci. Adv. 2018, 4, 6127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeil, M.A.; Mellin, C.; Matthews, S.; Wolff, N.H.; McClanahan, T.R.; Devlin, M.; Drovandi, C.; Mengersen, K.; Graham, N.A. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 2019, 3, 620–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellin, C.; Matthews, S.; Anthony, K.R.N.; Brown, S.C.; Caley, M.J.; Johns, K.A.; Osborne, K.; Puotinen, M.; Thompson, A.; Wolff, N.H.; et al. Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts. Glob. Change Biol. 2019, 25, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Costello, P.; Davidson, J.; Logan, M.; Coleman, G. Marine Monitoring Program: Annual Report for Inshore Coral Reef Monitoring 2018–19; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2021; pp. 2208–4118. Available online: https://hdl.handle.net/11017/3679 (accessed on 8 March 2023).
- Petus, C.; Devlin, M.; Thompson, A.; McKenzie, L.; Teixeira da Silva, E.; Collier, C.; Tracey, D.; Martin, K. Estimating the Exposure of Coral Reefs and Seagrass Meadows to Land-Sourced Contaminants in River Flood Plumes of the Great Barrier Reef: Validating a Simple Satellite Risk Framework with Environmental Data. Remote Sens. 2016, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Wooldridge, S.A. Preventable fine sediment export from the Burdekin River catchment reduces coastal seagrass abundance and increases dugong mortality within the Townsville region of the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2017, 114, 671–678. [Google Scholar] [CrossRef]
- McKenzie, L.; Collier, C.; Langlois, L.; Yoshida, R.L.; Uusitalo, J.; Waycott, M. Marine Monitoring Program: Annual Report for Inshore Seagrass Monitoring 2018–19; Great Barrier Reef Marine Park Authority, Ed.; Report for the Great Barrier Reef Marine Park Authority Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER); James Cook University: Townsville, Australia, 2021; p. 180. Available online: https://hdl.handle.net/11017/3680 (accessed on 8 March 2023).
- Brodie, J.; Devlin, M.; Lewis, S. Potential enhanced survivorship of crown of thorns starfish larvae due to near-annual nutrient enrichment during secondary outbreaks on the central mid-shelf of the Great Barrier Reef, Australia. Diversity 2017, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Pratchett, M.S.; Caballes, C.F.; Wilmes, J.C.; Matthews, S.; Mellin, C.; Sweatman, H.P.A.; Nadler, L.E.; Brodie, J.; Thompson, C.A.; Hoey, J.; et al. Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. Diversity 2017, 9, 41. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.; Mellin, C.; Pratchett, M. Larval Connectivity and Water Quality Explain Spatial Distribution of Crown-of-Thorns Starfish Outbreaks Across the Great Barrier Reef. 2020, Volume 87. Available online: https://10.1016/bs.amb.2020.08.007 (accessed on 23 April 2023).
- Blondeau-Patissier, D.; Brando, V.E.; Lønborg, C.; Leahy, S.M.; Dekker, A.G. Phenology of Trichodesmium spp. blooms in the Great Barrier Reef lagoon, Australia, from the ESA-MERIS 10-year mission. PLoS ONE 2018, 13, e0208010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petus, C.; Waterhouse, J.; Lewis, S.; Vacher, M.; Tracey, D.; Devlin, M. A flood of information: Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia). J. Environ. Manag. 2019, 248, 109255. [Google Scholar] [CrossRef]
- Furnas, M.; Mitchell, A.; Skuza, M.; Brodie, J. In the other 90%: Phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon. Mar. Pollut. Bull. 2005, 51, 253–265. [Google Scholar] [CrossRef]
- Oubelkheir, K.; Clementson, L.A.; Webster, I.T.; Ford, P.W.; Dekker, A.G.; Radke, L.C.; Daniel, P. Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Blondeau-Patissier, D.; Brando, V.E.; Oubelkheir, K.; Dekker, A.G.; Clementson, L.A.; Daniel, P. Bio-optical variability of the absorption and scattering properties of the Queensland inshore and reef waters, Australia. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Soja-Woźniak, M.; Baird, M.; Schroeder, T.; Qin, Y.; Clementson, L.; Baker, B.; Boadle, D.; Brando, V.; Steven, A.D.L. Particulate Backscattering Ratio as an Indicator of Changing Particle Composition in Coastal Waters: Observations From Great Barrier Reef Waters. J. Geophys. Res. Ocean. 2019, 124, 5485–5502. [Google Scholar] [CrossRef]
- State of Queensland and Commonwealth of Australia. Reef 2050 Water Quality Improvement Plan 2017–2022. 2018. Available online: https://www.reefplan.qld.gov.au/ (accessed on 23 April 2023).
- King, E.; Schroeder, T.; Brando, V.; Suber, K. A Pre-Operational System for Satellite Monitoring of Great Barrier Reef Marine Water Quality; Wealth from Oceans Flagship Report; CSIRO Wealth from Oceans Flagship: Hobart, Australia, 2014. [Google Scholar] [CrossRef]
- Brando, V.; Schroeder, T.; King, E.; Dyce, P. Reef Rescue Marine Monitoring Program: Using Remote Sensing for GBR-Wide Water Quality Final Report for 2012/13 Activities; CSIRO: Canberra, Australia, 2015. Available online: http://hdl.handle.net/11017/2971 (accessed on 8 March 2023).
- Devlin, M.; Petus, C.; da Silva, E.T.; Tracey, D.; Wolff, N.; Waterhouse, J.; Brodie, J. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data. Remote Sens. 2015, 7, 12909–12941. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.M.; Baird, M.E.; Mongin, M.; Parslow, J.; Skerratt, J.; Lovell, J.; Margvelashvili, N.; Matear, R.J.; Wild-Allen, K.; Robson, B.; et al. Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef. Biogeosciences 2016, 13, 6441–6469. [Google Scholar] [CrossRef] [Green Version]
- Gruber, R.; Waterhouse, J.; Logan, M.; Petus, C.; Howley, C.; Lewis, S.; Tracey, D.; Langlois, L.; Tonin, H.; Skuza, M.; et al. Marine Monitoring Program: Annual Report for Inshore Water Quality Monitoring 2018–19; Report for the Great Barrier Reef Marine Park Authority; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2020. Available online: https://elibrary.gbrmpa.gov.au/jspui/handle/11017/3665 (accessed on 20 July 2022).
- State of Queensland and Commonwealth of Australia. Reef Report Cards. Available online: https://www.reefplan.qld.gov.au/tracking-progress/reef-report-card (accessed on 2 April 2021).
- Burrage, D.M.; Heron, M.L.; Hacker, J.M.; Stieglitz, T.C.; Steinberg, C.R.; Prytz, A. Evolution and dynamics of tropical river plumes in the Great Barrier Reef: An integrated remote sensing and in situ study. J. Geophys. Res. Ocean. 2002, 107, SRF-17. [Google Scholar] [CrossRef] [Green Version]
- Devlin, M.; Schaffelke, B. Spatial extent of riverine flood plumes and exposure of marine ecosystems in the Tully coastal region, Great Barrier Reef. Mar. Freshw. Res. 2009, 60, 1109–1122. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Lovell, J.; Blondeau-Patissier, D. An ensemble neural network atmospheric correction for Sentinel-3 OLCI over coastal waters providing inherent model uncertainty estimation and sensor noise propagation. Remote Sens. Environ. 2022, 270, 112848. [Google Scholar] [CrossRef]
- Ruddick, K.; Neukermans, G.; Vanhellemont, Q.; Jolivet, D. Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: A review of recent results. Remote Sens. Environ. 2014, 146, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.; Vanhellemont, Q.; Yan, J.; Neukermans, G.; Wei, G.; Shang, S. Variability of suspended particulate matter in the Bohai Sea from the geostationary Ocean Colour Imager (GOCI). Ocean Sci. J. 2012, 47, 331–345. [Google Scholar] [CrossRef]
- Devlin, M.; Waterhouse, J.; Taylor, J.; Brodie, J. Flood Plumes in the Great Barrier Reef: Spatial and Temporal Patterns in Composition and Distribution; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2001; Available online: http://hdl.handle.net/11017/354 (accessed on 1 March 2023).
- Steven, A.; Hodge, J.; Cannard, T.; Carlin, G.; Franklin, H.; McJannet, D.; Moesender, C.; Searle, R. Continuous Water Quality Monitoring on the Great Barrier Reef; CSIRO Final Report to Great Barrier Reef Foundation; CSIRO: Canberra, Australia, 2014; p. 159. Available online: https://publications.csiro.au/publications/publication/PIcsiro:EP15170 (accessed on 8 March 2023).
- Patricio-Valerio, L.; Schroeder, T.; Devlin, M.J.; Qin, Y.; Smithers, S. A Machine Learning Algorithm for Himawari-8 Total Suspended Solids Retrievals in the Great Barrier Reef. Remote Sens. 2022, 14, 3503. [Google Scholar] [CrossRef]
- Great Barrier Reef Marine Park Authority. Great Barrier Reef Outlook Report 2019; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2019; Available online: http://hdl.handle.net/11017/3474 (accessed on 8 March 2023).
- Patricio-Valerio, L. Exploring Himawari-8 Observations for the Advanced Coastal Monitoring of the Great Barrier Reef; Doctoral Dissertation, James Cook University: Townsville, Australia, 2021. [Google Scholar] [CrossRef]
- Australian and Queensland Governments. Marine Modelling Methods, Reef Water Quality Report Card 2019; Report Card State of Queensland. 2020. Available online: https://www.reefplan.qld.gov.au/__data/assets/pdf_file/0017/211670/report-card-2019-methods-marine-modelling.pdf (accessed on 1 March 2023).
- Skerratt, J.; Soja-Wozniak, M.; Baird, M.E.; Mongin, M.; Wild-Allen, K.; Robson, B.; Margvelashvili, N. A novel bio-optical model that allows incorporation of traditional plankton and remote sensing methods and observations and improves the assessment of biogeochemical processes. In Proceedings of the Ocean Sciences Meeting 2020, San Diego, CA, USA, 16–21 February 2020. [Google Scholar]
- Baird, M.E.; Wild-Allen, K.A.; Parslow, J.; Mongin, M.; Robson, B.; Skerratt, J.; Rizwi, F.; Soja-Woźniak, M.; Jones, E.; Herzfeld, M. CSIRO Environmental Modelling Suite (EMS): Scientific description of the optical and biogeochemical models (vB3p0). Geosci. Model Dev. 2020, 13, 4503–4553. [Google Scholar] [CrossRef]
- Queensland Government. Water Monitoring Information Portal (WMIP). Available online: https://water-monitoring.information.qld.gov.au/ (accessed on 30 March 2021).
- Department of Environment and Science Queensland. Herbert River Drainage Sub-Basins—Facts and Maps, WetlandInfo Website. Available online: https://wetlandinfo.des.qld.gov.au/wetlands/facts-maps/sub-basin-herbert-river/ (accessed on 8 April 2023).
- Wolanski, E.; Mazda, Y.; King, B.; Gay, S. Dynamics, flushing and trapping in Hinchinbrook channel, a giant mangrove swamp, Australia. Estuar. Coast. Shelf Sci. 1990, 31, 555–579. [Google Scholar] [CrossRef]
- Wolanski, E.; Jones, M.; Williams, W.T. Physical Properties of Great Barrier Reef Lagoon Waters near Townsville. II Seasonal Variations. Aust. J. Freshw. Res. 1981, 32, 321–334. [Google Scholar] [CrossRef]
- Ametistova, L. Ocean Colour Remote Sensing of Flood Plumes in the Great Barrier Reef, Australia; University of Sydney, Camperdown, Australia. 2004. Available online: http://hdl.handle.net/2123/647 (accessed on 23 April 2023).
- Lewis, S.; Brodie, J.; Ledee, E.; Alewijnse, M. The Spatial Extent of Delivery of Terrestrial Materials from the Burdekin Region in the Great Barrier Reef Lagoon; Australian Centre for Tropical Freshwater Research (ACTFR), ACTFR Report. James Cook University: Townsville, Australia, 2006. Available online: https://www.academia.edu/download/45813595/The_spatial_extent_of_delivery_of_terres20160520-10677-1e10yrv.pdf (accessed on 23 April 2023).
- Devlin, M. Spatial and Temporal Patterns of Flood Plumes in the Great Barrier Reef, Australia; James Cook University: Townsville, Australia, 2005. [Google Scholar]
- King, B.; McAllister, F.; Done, T.J. Modelling the Impact of the Burdekin, Herbert, Tully and Johnstone River Plumes on the Central Great Barrier Reef; Citeseer: State College, PA, USA, 2002. [Google Scholar]
- Waterhouse, J.; Gruber, R.; Logan, M.; Petus, C.; Howley, C.; Lewis, S.; Tracey, D.; James, C.; Mellors, J.; Tonin, H.; et al. Marine Monitoring Program: Annual Report for Inshore Water Quality Monitoring 2019-20; Townsville. 2021. Available online: https://hdl.handle.net/11017/3826 (accessed on 27 February 2023).
- De’ath, G.A.; Fabricius, K.K. Water Quality of the Great Barrier Reef: Distributions, Effects on Reef Biota and Trigger Values for the Protection of Ecosystem Health; Final Report to the Great Barrier Reef Marine Park Authority Commonwealth of Australia and Australian Institute of Marine Science: Townsville, Australia, 2008; p. 104. Available online: http://hdl.handle.net/11017/416 (accessed on 23 April 2023).
- Great Barrier Reef Marine Park Authority. Water Quality Guidelines for the Great Barrier Reef Marine Park; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2010. Available online: https://elibrary.gbrmpa.gov.au/jspui/handle/11017/432 (accessed on 15 March 2019).
- State of Queensland. Mapping Procedural Guide: Management Intent and Water Type Mapping Methodology; Environmental Protection Policy (Water); Department of Environment and Science: Brisbane, Australia, 2018. Available online: https://environment.des.qld.gov.au/__data/assets/pdf_file/0022/87412/eppw-mapping-procedure-guide.pdf (accessed on 27 February 2023).
- Babin, M. Coastal Surveillance through Observation of Ocean Colour (COASTLOOC); Final Report; Laboratoire de Physique et Chimie Marines: Villefranche-sur-mer, France, 2000. [Google Scholar]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef]
- Boss, E.; Taylor, L.; Gilbert, S.; Gundersen, K.; Hawley, N.; Janzen, C.; Johengen, T.; Purcell, H.; Robertson, C.; Schar, D.W.H.; et al. Comparison of inherent optical properties as a surrogate for particulate matter concentration in coastal waters. Limnol. Oceanogr. Methods 2009, 7, 803–810. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: Cary, NC, USA, 1995. [Google Scholar]
- Schroeder, T. Fernerkundung von Wasserinhaltsstoffen in Küstengewässern mit MERIS unter Anwendung Expliziter und Impliziter Atmosphärenkorrekturverfahren (Remote Sensing of Coastal Waters with MERIS on Basis of Explicit and Implicit Atmospheric Correction Algorithms); Doctoral Dissertation, Freie Universität: Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Schroeder, T.; Fischer, J.; Schaale, M.; Fell, F. Artificial-neural-network-based atmospheric correction algorithm: Application to MERIS data. In Proceedings of the SPIE 4892, Ocean Remote Sensing and Applications, Hangzhou, China, 24–26 October 2002; pp. 124–132. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [Google Scholar] [CrossRef]
- Concha, J.A.; Bracaglia, M.; Brando, V.E. Assessing the influence of different validation protocols on Ocean Colour match-up analyses. Remote Sens. Environ. 2021, 259, 112415. [Google Scholar] [CrossRef]
- Great Barrier Reef Marine Park Authority. Marine Monitoring Program Quality Assurance and Quality Control Manual 2017–18; Great Barrier Reef Marine Park Authority: Townsville, Australia, 2019. Available online: http://elibrary.gbrmpa.gov.au/jspui/handle/11017/3487 (accessed on 15 May 2018).
- Qin, Y.; Steven, A.D.L.; Schroeder, T.; McVicar, T.R.; Huang, J.; Cope, M.; Zhou, S. Cloud Cover in the Australian Region: Development and Validation of a Cloud Masking, Classification and Optical Depth Retrieval Algorithm for the Advanced Himawari Imager. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef]
- Brando, V.; Dekker, A.G.; Park, Y.J.; Schroeder, T. Adaptive semianalytical inversion of ocean colour radiometry in optically complex waters. Appl. Opt. 2012, 51, 2808–2833. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, T.; Behnert, I.; Schaale, M.; Fischer, J.; Doerffer, R. Atmospheric correction algorithm for MERIS above case-2 waters. Int. J. Remote Sens. 2007, 28, 1469–1486. [Google Scholar] [CrossRef]
- Schroeder, T.; Brando, V.; Cherukuru, N.; Clementson, L.; Blondeau-Patissier, D.; Dekker, A.G.; Schaale, M.; Fischer, J. Remote sensing of apparent and inherent optical properties of Tasmanian coastal waters: Application to MODIS data. In Proceedings of the XIX Ocean Optics Conference, Barga, Italy, 6–10 October 2008; pp. 6–10. [Google Scholar]
- Steven, A.D.; Baird, M.E.; Brinkman, R.; Car, N.J.; Cox, S.J.; Herzfeld, M.; Hodge, J.; Jones, E.; King, E.; Margvelashvili, N.; et al. eReefs: An operational information system for managing the Great Barrier Reef. J. Oper. Oceanogr. 2019, 12, S12–S28. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency Validation Data Centre. Orbit Prediction Tool. Available online: https://evdc.esa.int/orbit/ (accessed on 20 February 2023).
- Satellite Data Services. Polar Orbit Tracks. Available online: https://www.ssec.wisc.edu/datacenter/polar_orbit_tracks/data/ (accessed on 20 February 2023).
- Bureau of Meteorology. Queensland in March 2018: Tropical Cyclone Nora; Flooding in the Northern Tropics. Monthly Climate Summary. Available online: http://www.bom.gov.au/climate/current/month/qld/archive/201803.summary.shtml (accessed on 10 March 2018).
- Hafeez, S.; Wong, M.S.; Abbas, S.; Jiang, G. Assessing the Potential of Geostationary Himawari-8 for Mapping Surface Total Suspended Solids and Its Diurnal Changes. Remote Sens. 2021, 13, 336. [Google Scholar] [CrossRef]
- Ding, X.; He, X.; Bai, Y.; Zhu, Q.; Gong, F.; Li, H.; Li, J. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8. Opt. Express 2020, 28, 27387–27404. [Google Scholar] [CrossRef] [PubMed]
- Neukermans, G.; Ruddick, K.G.; Greenwood, N. Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor. Remote Sens. Environ. 2012, 124, 564–580. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Neukermans, G.; Ruddick, K. Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution. Remote Sens. Environ. 2014, 146, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Eleveld, M.A.; van der Wal, D.; van Kessel, T. Estuarine suspended particulate matter concentrations from sun-synchronous satellite remote sensing: Tidal and meteorological effects and biases. Remote Sens. Environ. 2014, 143, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Dorji, P.; Fearns, P. Atmospheric correction of geostationary Himawari-8 satellite data for Total Suspended Sediment mapping: A case study in the Coastal Waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 2018, 144, 81–93. [Google Scholar] [CrossRef]
- Bracaglia, M.; Santoleri, R.; Volpe, G.; Colella, S.; Braga, F.; Bellafiore, D.; Brando, V.E. A Virtual Geostationary Ocean Colour Sensor to characterise the river-sea interaction over the North Adriatic Sea. In Proceedings of the EGU General Assembly Conference Abstracts, Virtual, 4–8 May 2020; p. 6846. [Google Scholar]
- Bracaglia, M.; Volpe, G.; Colella, S.; Santoleri, R.; Braga, F.; Brando, V.E. Using overlapping VIIRS scenes to observe short term variations in particulate matter in the coastal environment. Remote Sens. Environ. 2019, 233, 111367. [Google Scholar] [CrossRef]
- Bisson, K.; Boss, E.; Westberry, T.; Behrenfeld, M. Evaluating satellite estimates of particulate backscatter in the global open ocean using autonomous profiling floats. Opt. Express 2019, 27, 30191–30203. [Google Scholar] [CrossRef]
- Dorji, P.; Fearns, P. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia. PLoS ONE 2017, 12, e0175042. [Google Scholar] [CrossRef] [Green Version]
- Delandmeter, P.; Lambrechts, J.; Marmorino, G.O.; Legat, V.; Wolanski, E.; Remacle, J.-F.; Chen, W.; Deleersnijder, E. Submesoscale tidal eddies in the wake of coral islands and reefs: Satellite data and numerical modelling. Ocean Dyn. 2017, 67, 897–913. [Google Scholar] [CrossRef]
- Orpin, A.R.; Ridd, P.V. Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: A reappraisal. Cont. Shelf Res. 2012, 47, 55–67. [Google Scholar] [CrossRef]
- Orpin, A.R.; Ridd, P.V.; Thomas, S.; Anthony, K.R.; Marshall, P.; Oliver, J. Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments. Mar. Pollut. Bull. 2004, 49, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Lough, J.M.; Lewis, S.E.; Cantin, N.E. Freshwater impacts in the central Great Barrier Reef: 1648–2011. Coral Reefs 2015, 34, 739–751. [Google Scholar] [CrossRef]
- Larcombe, P.; Ridd, P.; Prytz, A.; Wilson, B. Factors controlling suspended sediment on inner-shelf coral reefs, Townsville, Australia. Coral Reefs 1995, 14, 163–171. [Google Scholar] [CrossRef]
- Larcombe, P.; Woolfe, K. Increased sediment supply to the Great Barrier Reef will not increase sediment accumulation at most coral reefs. Coral Reefs 1999, 18, 163–169. [Google Scholar] [CrossRef]
- Browne, N.K.; Smithers, S.G.; Perry, C.T. Spatial and temporal variations in turbidity on two inshore turbid reefs on the Great Barrier Reef, Australia. Coral Reefs 2013, 32, 195–210. [Google Scholar] [CrossRef]
- Larcombe, P.; Costen, A.; Woolfe, K.J. The hydrodynamic and sedimentary setting of nearshore coral reefs, central Great Barrier Reef shelf, Australia: Paluma Shoals, a case study. Sedimentology 2001, 48, 811–835. [Google Scholar] [CrossRef]
- Fabricius, K.E.; Logan, M.; Weeks, S.J.; Lewis, S.E.; Brodie, J. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002–2013. Estuar. Coast. Shelf Sci. 2016, 173, A1–A15. [Google Scholar] [CrossRef] [Green Version]
- Kleypas, J. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 1996, 15, 153–167. [Google Scholar] [CrossRef]
- Alvarez-Romero, J.G.; Devlin, M.; Teixeira da Silva, E.; Petus, C.; Ban, N.C.; Pressey, R.L.; Kool, J.; Roberts, J.J.; Cerdeira-Estrada, S.; Wenger, A.S.; et al. A Novel Approach to Model Exposure of Coastal Marine Ecosystems to Riverine Flood Plumes Based on Remote Sensing Techniques. J. Environ. Manag. 2013, 119, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Baird, M.; Andrewartha, J.; Herzfeld, M.; Jones, E.; Margvelashvili, N.; Mongin, M.; Rizwi, F.; Skerratt, J.; Soja-Wozniak, M.; Wild-Allen, K. River plumes of the Great Barrier Reef: Freshwater, sediment and optical footprints quantified by the eReefs modelling system. In Proceedings of the MODSIM2017, 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, Tasmania, Australia, 3–8 December 2017; pp. 1892–1898. [Google Scholar]
- Baird, M.E.; Cherukuru, N.; Jones, E.; Margvelashvili, N.; Mongin, M.; Oubelkheir, K.; Ralph, P.J.; Rizwi, F.; Robson, B.J.; Schroeder, T.; et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 2016, 78, 79–96. [Google Scholar] [CrossRef]
Enclosed Coastal | Open Coastal/Midshelf | Offshore | |
---|---|---|---|
Annual mean | 5 and 15 | 2.0 | 0.7 |
Wet Season | N/A | 1.6 | 0.8 |
Dry Season | N/A | 2.4 | 0.6 |
April #1 | April #2 | May #1 | May #2 | |
---|---|---|---|---|
6.1 | 4.2 | 1.4 | 2.0 | |
7.3 | 6.7 | 1.2 | 1.5 | |
8.8 | 8.1 | 3.4 | 4.2 | |
(SD) | 9.8 (±3) | 9.0 (±4) | 3.0 (±1) | 2.5 (±0.5) |
(hours: minutes) | 00:10 | 01:10 | 00:40 | 01:00 |
Tidal range (m) | 2.5 | 2.7 | 2.3 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patricio-Valerio, L.; Schroeder, T.; Devlin, M.J.; Qin, Y.; Smithers, S. Meteorological Satellite Observations Reveal Diurnal Exceedance of Water Quality Guideline Thresholds in the Coastal Great Barrier Reef. Remote Sens. 2023, 15, 2335. https://doi.org/10.3390/rs15092335
Patricio-Valerio L, Schroeder T, Devlin MJ, Qin Y, Smithers S. Meteorological Satellite Observations Reveal Diurnal Exceedance of Water Quality Guideline Thresholds in the Coastal Great Barrier Reef. Remote Sensing. 2023; 15(9):2335. https://doi.org/10.3390/rs15092335
Chicago/Turabian StylePatricio-Valerio, Larissa, Thomas Schroeder, Michelle J. Devlin, Yi Qin, and Scott Smithers. 2023. "Meteorological Satellite Observations Reveal Diurnal Exceedance of Water Quality Guideline Thresholds in the Coastal Great Barrier Reef" Remote Sensing 15, no. 9: 2335. https://doi.org/10.3390/rs15092335