Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing
"> Figure 1
<p>Location of the study area, different fire areas and meteorological stations. Elevation data were derived from the advanced spaceborne thermal emission and reflection radiometer global digital elevation model (ASTER GDEM) data at 30 m spatial resolution. The small images surrounding the map of the study area show real-time captured images of the various fire areas.</p> "> Figure 2
<p>Examples of visual classification of the fire severity levels.</p> "> Figure 3
<p>Fire severity rating map in the field combined with sample points collected by UAV images.</p> "> Figure 4
<p>Burned area based on dNDVI.</p> "> Figure 5
<p>Burned area based on dNBR.</p> "> Figure 6
<p>Scatter plots of fire area extraction using visual interpretation, dNDVI, and dNBR. (<b>a</b>) is visual interpretation and dNDVI, (<b>b</b>) is dNDVI and dNBR, (<b>c</b>) is visual interpretation and dNBR.</p> "> Figure 7
<p>Confusion matrix of field UAV and dNBR classification results.</p> "> Figure 8
<p>Analysis of fire severity in each forest fire area in Chongqing.</p> "> Figure 9
<p>Elevation of each forest fire area in Chongqing.</p> "> Figure 10
<p>Slope of each forest fire area in Chongqing.</p> "> Figure 11
<p>Aspect of each forest fire area in Chongqing.</p> "> Figure 12
<p>Spatiotemporal evolution of drought in Chongqing based on the standard scores of temperatures.</p> "> Figure 13
<p>Spatiotemporal evolution of drought in Chongqing based on the SPI.</p> "> Figure 14
<p>Spatiotemporal evolution of drought in Chongqing in 2022 based on the SSMI.</p> "> Figure 15
<p>Changes in temperature, soil moisture, and rainfall at various meteorological stations in Chongqing in 2022.</p> "> Figure 16
<p>Confusion matrix of burned area extracted from different data sources and UAV results based on pixel element scale.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Remote Sensing Data
2.2.2. Meteorological Data
2.3. Methods
2.3.1. Normalized Difference Vegetation Index (NDVI)
2.3.2. Normalized Burnup Ratio (NBR)
2.3.3. Threshold Method
2.3.4. Drought Indicator Calculation
3. Results
3.1. Fire Burned Area Statistics
3.2. Fire Severity Analysis
3.3. Fire Severity and Topography
4. Discussion
4.1. Meteorological Factors Affecting Forest Fires
4.2. Human Factors Influencing Forest Fires
4.3. Limitations and Uncertainties
5. Conclusions
- (1)
- There were good correlations between the burned areas extracted using the three different methods, with coefficients of determination R2 > 0.96 in all cases.
- (2)
- The kappa coefficient of the UAV sampling point threshold and dNBR classification results was 0.8889. On the basis of this threshold, the results of forest fire severity classification were moderate severity (58.05%) > low severity (29.96%) > high severity (11.99%).
- (3)
- The burned area in high-elevation areas was somewhat greater than that in low-elevation areas, accounting for 53.34% of the total burned area. With an increase in slope, each percentage showed an overall increasing trend. However, the burned area of steep slopes had the largest burned area (45.91%); flat land had the smallest burned area (2.87%). The northwest and west had more burned area accounting for 16.31% and 15%, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X. The Impact of Forest Fire on Forest Ecosystem. Mod. Agric. Res. 2021, 27, 101–103. [Google Scholar]
- Wang, L.; Qu, J.J.; Hao, X. Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measurements. Agric. For. Meteorol. 2008, 148, 1767–1776. [Google Scholar] [CrossRef]
- Chuvieco, E.; Congalton, R.G. Application of Remote Sensing and Geographic Information Systems to Forest Fire Hazard Mapping. Remote Sens. Environ. 1989, 2, 147–159. [Google Scholar] [CrossRef]
- Crosby, E.U. Fire prevention. In The Annals of the American Academy of Political and Social Science; SAGE: Thousand Oaks, CA, USA, 1905; Volume 26, pp. 224–238. [Google Scholar]
- Pereira, J.M. Remote sensing of burned areas in tropical savannas. Int. J. Wildland Fire 2003, 12, 259–270. [Google Scholar] [CrossRef]
- Jazebi, S.; de Leon, F.; Nelson, A. Review of Wildfire Management Techniques—Part I: Causes, Prevention, Detection, Suppression, and Data Analytics. IEEE Trans. Power Deliv. 2020, 35, 430–439. [Google Scholar] [CrossRef]
- Robinson, J.M. Fire from space: Global fire evaluation using infrared remote sensing. Int. J. Remote Sens. 1991, 12, 3–24. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Li, Q.; Cui, J.; Jiang, W.; Jiao, Q.; Gong, L.; Zhang, J.; Shen, X. Monitoring of the Fire in Muli County on March 28, 2020, based on high temporal-spatial resolution remote sensing techniques. Nat. Hazards Res. 2021, 1, 20–31. [Google Scholar] [CrossRef]
- Huang, X. Research on Fire Point Monitoring with High Time and High Spatial Resolution Based on Multi-Source Remote Sensing Data. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2020. [Google Scholar]
- Holden, Z.A.; Smith, A.; Morgan, P.; Rollins, M.G.; Gessler, P.E. Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int. J. Remote Sens. 2005, 26, 4801–4808. [Google Scholar] [CrossRef]
- Wu, L.; Shen, R.; Li, X.; Yang, H. Evaluating Different Remote Sensing Indexes for Forest Burn Scars Extraction. Remote Sens. Technol. Appl. 2014, 29, 567–574. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- García, M.L.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto Int. 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P. Cartografía de grandes incendios forestales en la Península Ibérica a partir de imágenes NOAA-AVHRR. Volumen 1998, 7, 109–128. [Google Scholar]
- Tariq, A.; Shu, H.; Siddiqui, S.; Mousa, B.G.; Munir, I.; Nasri, A.; Waqas, H.; Lu, L.; Baqa, M.F. Forest fire monitoring using spatial-statistical and Geo-spatial analysis of factors determining forest fire in Margalla Hills, Islamabad, Pakistan. Geomat. Nat. Hazards Risk 2021, 12, 1212–1233. [Google Scholar] [CrossRef]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest fires and climate change: Causes, consequences and management options. Int. J. Wildland Fire. 2016, 25, i–ii. [Google Scholar] [CrossRef]
- Liu, Y. Based GEE Study on Forest Fire Identification and Post-Fire Vegetation Restoration Assessment. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Jain, S.K.; Keshri, R.; Goswami, A.; Sarkar, A. Application of meteorological and vegetation indices for evaluation of drought impact: A case study for Rajasthan, India. Nat. Hazards. 2010, 54, 643–656. [Google Scholar] [CrossRef]
- Sanders, J. Observations of fire behaviour in eucalypt woodland near the Hunter Valley, NSW, and recommendations for control strategies in extreme conditions. In Proceedings of the Bushfire’99 Australian Bushfire Conference, Albury, Australia, 7–9 July 1999. [Google Scholar]
- Tian, Y.; Wu, Z.; Li, M.; Wang, B.; Zhang, X. Forest Fire Spread Monitoring and Vegetation Dynamics Detection Based on Multi-Source Remote Sensing Images. Remote Sens. 2022, 14, 4431. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Harrington, J.B. A study of the relationship of meteorological variables to monthly provincial area burned by wildfire in Canada (1953-80). J. App. Met. 1988, 27, 441–452. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Cohn, J.S.; Gill, A.M.; Bedward, M.; Lucas, C. Prediction of the probability of large fires in the Sydney region of south-eastern Australia using fire weather. Int. J. Wildland Fire 2009, 18, 932–943. [Google Scholar] [CrossRef]
- Xu, M.; Ma, W. Relationship between Arid Climatic Factors and Forest Fires. J. Glaciol. Geocryol. 2012, 34, 603–608. [Google Scholar]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. Drought A Glob. Assess. 2000, I, 3–18. [Google Scholar]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The propagation from meteorological to hydrological drought and its potential influence factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Ma, Z.; Ren, X. Drying Trend over China from 1951 to 2006. Adv. Clim. Chang. Res. 2007, 3, 195. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Heim Jr, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Yang, C.; Zhang, C.; Yu, H. A parametric multivariate drought index for drought monitoring and assessment under climate change. Agric. For. Meteorol. 2021, 310, 108657. [Google Scholar] [CrossRef]
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X.; Chen, Z. Spatiotemporal changes in China’s terrestrial water storage from GRACE satellites and its possible drivers. J. Geophys. Res. Atmos. 2019, 124, 11976–11993. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993; Volume 17, pp. 179–183. [Google Scholar]
- Mpelasoka, F.; Hennessy, K.; Jones, R.; Bates, B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. A J. R. Meteorol. Soc. 2008, 28, 1283–1292. [Google Scholar] [CrossRef]
- AghaKouchak, A. A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrol. Earth Syst. Sci. 2014, 18, 2485–2492. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a standardized runoff index for characterizing hydrologic drought. Geophys. Res. Lett. 2008, 35, L2401–L2405. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Haro-Monteagudo, D.; Daccache, A.; Knox, J. Exploring the utility of drought indicators to assess climate risks to agricultural productivity in a humid climate. Hydrol. Res. 2018, 49, 539–551. [Google Scholar] [CrossRef]
- Afshar, M.H.; Bulut, B.; Duzenli, E.; Amjad, M.; Yilmaz, M.T. Global spatiotemporal consistency between meteorological and soil moisture drought indices. Agric. Forest Meteorol. 2022, 316, 108848. [Google Scholar] [CrossRef]
- Sohrabi, M.M.; Ryu, J.H.; Abatzoglou, J.; Tracy, J. Development of soil moisture drought index to characterize droughts. J. Hydrol. Eng. 2015, 20, 4015025. [Google Scholar] [CrossRef]
- Anderson, W.B.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.C.; Yilmaz, M.T.; Mecikalski, J.; Schultz, L. Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913. [Google Scholar] [CrossRef]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Ullah, I.; Gahigi, A.; Mumo, R.; Ayugi, B. Recent Observed Changes in Extreme High-Temperature Events and Associated Meteorological Conditions over Africa. Int. J. Climatol. 2022, 42, 4522–4537. [Google Scholar] [CrossRef]
- Wang, Y.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, D.; Xie, S.; Li, L.; Zhang, G.; He, R. Groundwater quality and land use change in a typical karst agricultural region. J. Geogr. Sci. 2006, 16, 405–414. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Roodsarabi, Z.; Sam-Khaniani, A.; Kiani, A. Investigation of post fire vegetation regrowth under different burn severities based on satellite observations. Int. J. Environ. Sci. Technol. 2022, 20, 321–340. [Google Scholar] [CrossRef]
- Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney wildfires. Int. J. Wildland Fire 2004, 13, 227. [Google Scholar] [CrossRef]
- White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 1996, 6, 125–136. [Google Scholar] [CrossRef]
- Mazuelas Benito, P.; Fernández Torralbo, A. Landsat and MODIS Images for Burned Areas Mapping in Galicia, Spain. Master’s Thesis, School of Architecture and the Built Environment Royal Institute of Technology, Stockholm, Sweden, 2012. [Google Scholar]
- Viedma, O.; Quesada, J.; Torres, I.; De Santis, A.; Moreno, J.M. Fire Severity in a Large Fire in a Pinus pinaster Forest is Highly Predictable from Burning Conditions, Stand Structure, and Topography. Ecosystems 2015, 18, 237–250. [Google Scholar] [CrossRef]
- Birch, D.S.; Morgan, P.; Kolden, C.A.; Abatzoglou, J.T.; Dillon, G.K.; Hudak, A.T.; Smith, A.M.S. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Rose, R.L.; Chafer, C.J. GIS and decision-tree modelling as a framework for the preparation of fire management plans in conservation reserves. In Proceedings of the ‘97Australian Bushfire Conference, Darwin, Australia, 8–10 July 1997. [Google Scholar]
- Asadi Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index: User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Cheadle, C.; Vawter, M.P.; Freed, W.J.; Becker, K.G. Analysis of microarray data using Z score transformation. J. Mol. Diagn. 2003, 5, 73. [Google Scholar] [CrossRef] [PubMed]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Gass, L.; Dewitz, J.A.; Sorenson, D.G.; Granneman, B.J.; Poss, R.V.; Baer, L.A. Thematic accuracy assessment of the 2011 National Land Cover Database (NLCD). Remote Sens. Environ. 2017, 191, 328–341. [Google Scholar] [CrossRef] [PubMed]
Data Type | Temporal Resolution /day | Spatial Resolution /m | Spatial Coverage | Data Available | Acquisition Date Range | Source |
---|---|---|---|---|---|---|
Sentinel-2 | 5 | 10/20 | global | 2015–now | 4 August 2022–5 September 2022 | https://scihub.copernicus.eu/, accessed on 9 September 2022 |
Landsat8 | 16 | 30 | global | 2013–now | 6 September 2022 | https://earthexplorer.usgs.gov/, accessed on 8 September 2022 |
HJ2A | 2–5 | 16 | China | 2020–now | 6 September 2022 | https://data.cresda.cn/#/mapSearch, accessed on 10 September 2022 |
GF-6 | 2–4 | 16 | global | 2018–now | 8 August 2022/5 September 2022 | |
UAV images | / | 0.28 | / | / | 21 October 2022 | Data collected in this study |
dNBR | Description |
---|---|
<0.15 | Low severity |
0.15–0.4 | Moderate severity |
>0.4 | High severity |
Location Name | Visual Interpretation (km2) | dNDVI (km2) | dNBR (km2) |
---|---|---|---|
Shentong Town, Nanchuan | 1.15 | 1.14 | 1.03 |
Sanquan Town, Nanchuan | 0.64 | 0.64 | 0.50 |
Jiangjin | 6.27 | 6.03 | 5.61 |
Banan | 12.54 | 12.37 | 8.47 |
Tongliang | 10.44 | 9.99 | 8.93 |
Fuling | 0.84 | 0.82 | 0.59 |
Bishan | 0.64 | 0.26 | 0.51 |
Beibei | 12.83 | 10.65 | 9.94 |
Changshou | 3.71 | 3.58 | 2.37 |
Fengjie | 0.37 | 0.33 | 0.17 |
Kaizhou | 0.21 | 0.20 | 0.13 |
Location Name | Low Severity (km2) | Moderate Severity (km2) | High Severity (km2) |
---|---|---|---|
Shentong Town, Nanchuan | 0.13 | 0.77 | 0.19 |
Sanquan Town, Nanchuan | 0.16 | 0.38 | 0.08 |
Jiangjin | 1.26 | 3.83 | 0.94 |
Banan | 4.75 | 5.72 | 1.61 |
Tongliang | 1.94 | 6.91 | 1.17 |
Fuling | 0.30 | 0.42 | 0.07 |
Bishan | 0.18 | 0.36 | 0.08 |
Beibei | 3.60 | 7.51 | 1.30 |
Changshou | 1.64 | 1.67 | 0.28 |
Fengjie | 0.26 | 0.06 | 0 |
Kaizhou | 0.08 | 0.09 | 0.01 |
Total | 14.31 | 27.73 | 5.73 |
Percentage | 29.96% | 58.05% | 11.99% |
Elevation (m) | Low Severity (km2) | Moderate Severity (km2) | High Severity (km2) | Total (km2) | Percentage |
---|---|---|---|---|---|
276–500 | 7.10 | 13.19 | 2.57 | 22.86 | 46.66% |
500–999 | 7.40 | 15.76 | 2.98 | 26.13 | 53.34% |
Slope (°) | Low Severity (km2) | Moderate Severity (km2) | High Severity (km2) | Total (km2) | Percentage |
---|---|---|---|---|---|
Flat | 0.42 | 0.80 | 0.18 | 1.40 | 2.87% |
Gentle | 1.83 | 3.45 | 0.73 | 6.01 | 12.28% |
Undulating | 3.87 | 7.51 | 1.53 | 12.91 | 26.4% |
Steep | 6.61 | 13.38 | 2.47 | 22.45 | 45.91% |
Very steep | 1.76 | 3.75 | 0.62 | 6.14 | 12.54% |
Aspect | Low Severity (km2) | Moderate Severity (km2) | High Severity (km2) | Total (km2) | Percentage |
---|---|---|---|---|---|
North | 1.89 | 3.48 | 0.50 | 5.87 | 11.99% |
Northeast | 1.61 | 2.72 | 0.45 | 4.78 | 9.77% |
East | 2.26 | 3.70 | 0.67 | 6.63 | 13.55% |
Southeast | 1.89 | 3.85 | 0.90 | 6.64 | 13.57% |
South | 1.31 | 2.71 | 0.70 | 4.72 | 9.64% |
Southwest | 1.14 | 3.06 | 0.78 | 4.98 | 10.18% |
West | 1.94 | 4.61 | 0.79 | 7.34 | 15% |
Northwest | 2.46 | 4.76 | 0.76 | 7.98 | 16.31% |
Drought Index | Description |
---|---|
≥2.0 | Extremely wet |
1.5 to 1.99 | Very wet |
1.0 to 1.49 | Moderately wet |
−0.99 to 0.99 | Near normal |
−1 to −1.49 | Moderately dry |
−1.5 to −1.99 | Severely dry |
≤−2.0 | Extremely dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Huang, Y.; Sun, X.; Dong, G.; Li, Y.; Ma, M. Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing. Remote Sens. 2023, 15, 2323. https://doi.org/10.3390/rs15092323
Zhao Y, Huang Y, Sun X, Dong G, Li Y, Ma M. Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing. Remote Sensing. 2023; 15(9):2323. https://doi.org/10.3390/rs15092323
Chicago/Turabian StyleZhao, Yixin, Yajun Huang, Xupeng Sun, Guanyu Dong, Yuanqing Li, and Mingguo Ma. 2023. "Forest Fire Mapping Using Multi-Source Remote Sensing Data: A Case Study in Chongqing" Remote Sensing 15, no. 9: 2323. https://doi.org/10.3390/rs15092323