A Target Imaging and Recognition Method Based on Raptor Vision
<p>The structure of raptor’s eye. (<b>a</b>) Deep fovea and shallow fovea. (<b>b</b>) Horizontally-orientated visual area.</p> "> Figure 2
<p>Distribution of cone cells in the deep fovea. (<b>a</b>) The distribution of foveal cone cells. (<b>b</b>) The relative receptor density.</p> "> Figure 3
<p>Anatomy of the deep fovea.</p> "> Figure 4
<p>The designed two sub-optical systems.</p> "> Figure 5
<p>The schematic diagram of optical imaging.</p> "> Figure 6
<p>The designed optical imaging device.</p> "> Figure 7
<p>The sketch of the optic tectum pathway (dotted line) and thalamic pathway (solid line) in a raptor’s brain [<a href="#B36-remotesensing-15-02106" class="html-bibr">36</a>].</p> "> Figure 8
<p>The schematic diagram of the optic tectum pathway.</p> "> Figure 9
<p>The designed AOCNet.</p> "> Figure 10
<p>The designed feedback layers.</p> "> Figure 11
<p>The imaging device based on raptor vision. (<b>a</b>) Optical imaging equipment. (<b>b</b>) Experimental environment.</p> "> Figure 12
<p>Images captured by the optical imaging system. (<b>a</b>) Imaging from the peripheral region. (<b>b</b>) Imaging from the central region.</p> "> Figure 13
<p>Target recognition in the imaging system. (<b>a</b>) Target recognition results of wide FOV. (<b>b</b>) Target recognition results of narrow FOV.</p> "> Figure 14
<p>The results on the NWPU VHR-10 dataset. (<b>a</b>) Accuracy. (<b>b</b>) Loss. (<b>c</b>) mAP.</p> "> Figure 15
<p>The results on our dataset. (<b>a</b>) Accuracy. (<b>b</b>) Loss. (<b>c</b>) mAP.</p> ">
Abstract
:1. Introduction
2. Optical Imaging Equipment and Target Recognition Method
2.1. Optical Imaging Equipment Based on Raptor Vision
2.2. AOCNet Based on Biological Vision
3. Results and Discussion
3.1. Datasets and Evaluation Metrics
3.2. Implementation
3.3. Optical Imaging System
3.4. Target Recognition Results
3.5. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FOV | Field of view |
CNN | Convolutional neural network |
AOCNet | The proposed attention and feedback module based on octave convolution network |
AT | The attention module |
OC | The octave convolution |
LFL | Low-frequency layer |
References
- Hu, W.; Tan, T.; Wang, L.; Maybank, S.J. A Survey on Visual Surveillance of Object Motion and Behaviors. IEEE Trans. Syst. Man, Cybern. Part C (Appl. Rev.) 2004, 34, 334–352. [Google Scholar] [CrossRef]
- Desouza, G.N.; Kak, A.C. Vision for Mobile Robot Navigation: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Jiang, H. Artificial Eye for Scotopic Vision with Bioinspired All-Optical Photosensitivity Enhancer. Proc. Natl. Acad. Sci. USA 2016, 113, 3982–3985. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhang, Q. Visual Measurement in Simulation Environment for Vision-Based UAV Autonomous Aerial Refueling. IEEE Trans. Instrum. Meas. 2015, 64, 2468–2480. [Google Scholar] [CrossRef]
- Lin, F.; Dong, X.; Chen, B.M.; Lum, K.-Y.; Lee, T. A Robust Real-Time Embedded Vision System on an Unmanned Rotorcraft for Ground Target Following. IEEE Trans. Ind. Electron. 2012, 59, 1038–1049. [Google Scholar] [CrossRef]
- Ferone, A.; Maddalena, L. Neural Background Subtraction for Pan-Tilt-Zoom Cameras. IEEE Trans. Syst. Man, Cybern. Syst. 2014, 44, 571–579. [Google Scholar] [CrossRef]
- Minaeian, S.; Liu, J.; Son, Y.-J. Vision-Based Target Detection and Localization via a Team of Cooperative UAV and UGVs. IEEE Trans. Syst. Man Cybern. Syst. 2016, 46, 1005–1016. [Google Scholar] [CrossRef]
- Ben-Aderet, Y.; Granot, E.; Sternklar, S.; Tal, T.; Kopeika, N.S. Optical Imaging of Hidden Objects behind Clothing. Appl. Opt. 2010, 49 20, 3926–3929. [Google Scholar] [CrossRef]
- Karangwa, J.; Kong, L.; Yi, D.; Zheng, J. Automatic Optical Inspection Platform for Real-Time Surface Defects Detection on Plane Optical Components Based on Semantic Segmentation. Appl. Opt. 2021, 60 Pt 19, 5496–5506. [Google Scholar] [CrossRef]
- Huang, F.; Wang, Y.; Shen, X.; Li, G.; Yan, S. Analysis of Space Target Detection Range Based on Space-Borne Fisheye Imaging System in Deep Space Background. Infrared Phys. Technol. 2012, 55, 475–480. [Google Scholar] [CrossRef]
- Floreano, D.; Pericet-Camara, R.; Viollet, S.; Ruffier, F.; Brückner, A.; Leitel, R.; Buss, W.; Menouni, M.; Expert, F.; Juston, R.; et al. Miniature Curved Artificial Compound Eyes. Proc. Natl. Acad. Sci. USA 2013, 110, 9267–9272. [Google Scholar] [CrossRef] [PubMed]
- Kerhuel, L.; Viollet, S.; Franceschini, N. Steering by Gazing: An Efficient Biomimetic Control Strategy for Visually Guided Micro Aerial Vehicles. IEEE Trans. Robot. 2010, 26, 307–319. [Google Scholar] [CrossRef]
- Lu, W.; Chen, S.; Xiong, Y.; Liu, J. A Single Ball Lens-Based Hybrid Biomimetic Fish Eye/Compound Eye Imaging System. Opt. Commun. 2021, 480, 126458. [Google Scholar] [CrossRef]
- Jones, M.P.; Pierce, K.E.; Ward, D. Avian Vision: A Review of Form and Function with Special Consideration to Birds of Prey. J. Exot. Pet Med. 2007, 16, 69–87. [Google Scholar] [CrossRef]
- Liu, K.; Huang, J.; Li, X. Eagle-Eye-Inspired Attention for Object Detection in Remote Sensing. Remote Sens. 2022, 14, 1743. [Google Scholar] [CrossRef]
- Victory, N.; Segovia, Y.; García, M. Foveal Shape, Ultrastructure and Photoreceptor Composition in Yellow-Legged Gull, Larus Michahellis (Naumann, 1840). Zoomorphology 2021, 140, 151–167. [Google Scholar] [CrossRef]
- Snyder, A.W.; Miller, W.H. Telephoto Lens System of Falconiform Eyes. Nature 1978, 275, 127–129. [Google Scholar] [CrossRef]
- Duan, H.; Deng, Y.; Wang, X.; Liu, F. Biological Eagle-Eye - Based Visual Imaging Guidance Simulation Platform for Unmanned Flying Vehicles. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 36–45. [Google Scholar] [CrossRef]
- Deng, Y.; Duan, H. Biological Eagle-Eye-Based Visual Platform for Target Detection. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 3125–3136. [Google Scholar] [CrossRef]
- Prathiba, T.; Kumari, R.S.S. Eagle Eye CBVR Based on Unique Key Frame Extraction and Deep Belief Neural Network. Wirel. Pers. Commun. 2021, 116, 411–441. [Google Scholar] [CrossRef]
- Matthews, I.; Baker, S. Active Appearance Models Revisited. Int. J. Comput. Vis. 2004, 2, 135–164. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Liu, Z.; Shen, J. Semi-Automatic Road Tracking by Template Matching and Distance Transformation in Urban Areas. Remote Sens. 2011, 32, 8331–8347. [Google Scholar] [CrossRef]
- Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Bu, S.; Wu, J. Efficient, Simultaneous Detection of Multi-Class Geospatial Targets Based on Visual Saliency Modeling and Discriminative Learning of Sparse Coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37–48. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, H.; Zhou, J. VHR Object Detection Based on Structural Feature Extraction and Query Expansion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6508–6520. [Google Scholar]
- Shi, Z.; Yu, X.; Jiang, Z.; Li, B. Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4511–4523. [Google Scholar]
- Hu, Y.; Li, X.; Zhou, N.; Yang, L.; Peng, L.; Xiao, S. A Sample Update-Based Convolutional Neural Network Framework for Object Detection in Large-Area Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 947–951. [Google Scholar] [CrossRef]
- Li, E.; Femiani, J.; Xu, S.; Zhang, X.; Wonka, P. Robust Rooftop Extraction From Visible Band Images Using Higher Order CRF. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4483–4495. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Han, X.; Zhong, Y.; Zhang, L. An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery. Remote Sens. 2017, 9, 666. [Google Scholar] [CrossRef]
- Guzmán-Pando, A.; Chacon-Murguia, M.I. DeepFoveaNet: Deep Fovea Eagle-Eye Bioinspired Model to Detect Moving Objects. IEEE Trans. Image Process. 2021, 30, 7090–7100. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Q.; Hu, Y.; Zhang, C.; He, W. A Miniature Biological Eagle-Eye Vision System for Small Target Detection. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021. [Google Scholar]
- Benowitz, L.I.; Karten, H.J. Organization of the Tectofugal Visual Pathway in the Pigeon: A Retrograde Transport Study. J. Comp. Neurol. 1976, 167, 503–520. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Xu, X.; Deng, Y.; Zeng, Z. Unmanned Aerial Vehicle Recognition of Maritime Small-Target Based on Biological Eagle-Eye Vision Adaptation Mechanism. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3368–3382. [Google Scholar] [CrossRef]
- Reymond, L. Spatial Visual Acuity of the Eagle Aquila Audax: A Behavioural, Optical and Anatomical Investigation. Vis. Res. 1985, 25, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, M.F.; Hodos, W. The Visual Acuity and Refractive State of the American Kestrel (Falco Sparverius). Vis. Res. 2003, 43, 2053–2059. [Google Scholar] [CrossRef]
- Deng, C. Relative Contributions of the Two Visual Pathways to Avian Behaviour. Acta Zoo. 2006, 52, 379–383. [Google Scholar]
- Chen, Y.; Fan, H.; Xu, B.; Yan, Z.; Kalantidis, Y.; Rohrbach, M.; Shuicheng, Y.; Feng, J. Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks With Octave Convolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Su, H.; Wei, S.; Yan, M.; Wang, C.; Shi, J.; Zhang, X. Object Detection and Instance Segmentation in Remote Sensing Imagery Based on Precise Mask R-CNN. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 1454–1457. [Google Scholar]
- Su, H.; Wei, S.; Liu, S.; Liang, J.; Wang, C.; Shi, J.; Zhang, X. HQ-ISNet: High-Quality Instance Segmentation for Remote Sensing Imagery. Remote Sens. 2020, 12, 989. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A Review of Object Detection Based on Deep Learning. Multimed. Tools Appl. 2020, 79, 23729–23791. [Google Scholar] [CrossRef]
- Zhang, H.; Chang, H.; Ma, B.; Wang, N.; Chen, X. Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training. In Proceedings of the ECCV, Glasgow, UK, 23–28 August 2020; pp. 260–275. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the 14th ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1–6. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
Layer I | Convolution Operation | Output Size | Strides |
---|---|---|---|
layer 0 | 4 | ||
layer 1 | 8 | ||
layer 2 | 16 | ||
layer 3 | 32 | ||
layer 4 | 64 |
Convolution | Channel | Kernel | Stride | Padding |
---|---|---|---|---|
3 | 1 | 1 | ||
3 | 1 | 1 | ||
3 | 1 | 1 | ||
3 | 1 | 1 |
Method | Faster R-CNN | Faster R-CNN with FPN | Faster R-CNN with AOCNet | Dynamic R-CNN | Dynamic R-CNN with AOCNet |
---|---|---|---|---|---|
Airplane | 0.909 | 0.909 | 0.909 | 0.909 | 0.909 |
Ship | 0.813 | 0.814 | 0.877 | 0.816 | 0.816 |
Storage tank | 0.762 | 0.843 | 0.902 | 0.861 | 0.884 |
Baseball diamond | 0.900 | 0.903 | 0.970 | 0.908 | 0.909 |
Tennis court | 0.697 | 0.789 | 0.817 | 0.724 | 0.727 |
Basketball court | 0.810 | 0.814 | 0.896 | 0.810 | 0.883 |
Ground track field | 0.996 | 0.907 | 0.993 | 0.907 | 0.908 |
Harbor | 0.673 | 0.751 | 0.737 | 0.773 | 0.788 |
Bridge | 0.535 | 0.556 | 0.644 | 0.527 | 0.626 |
Vehicle | 0.782 | 0.806 | 0.801 | 0.803 | 0.884 |
mAP | 0.788 | 0.809 | 0.855 | 0.804 | 0.833 |
Method | Backbone | mAP | FPS |
---|---|---|---|
SSD300 | VGG16 | 0.786 | 33.4 |
YOLOV3 | MobileNetV2 | 0.832 | 68.4 |
Dynamic R-CNN | Resnet50 | 0.804 | 9.6 |
Faster R-CNN | Resnet50 | 0.788 | 9.6 |
Faster R-CNN with FPN | Resnet50 | 0.809 | 9.5 |
Faster R-CNN with AOCNet | Resnet50 | 0.855 | 7.4 |
Method | Dynamic R-CNN | Dynamic R-CNN with AOCNet | Faster R-CNN with FPN | Faster R-CNN with AOCNet |
---|---|---|---|---|
Truck gun | 0.909 | 0.995 | 0.909 | 0.997 |
UAV | 0.999 | 1.000 | 1.000 | 1.000 |
Ball | 0.906 | 0.907 | 0.904 | 0.907 |
Plane | 0.908 | 0.991 | 0.909 | 0.993 |
Person | 0.999 | 1.000 | 1.000 | 1.000 |
Tank | 0.909 | 0.909 | 0.909 | 0.909 |
Carrier | 0.962 | 0.971 | 1.000 | 0.987 |
Car | 0.909 | 0.909 | 0.909 | 0.909 |
Airplane | 0.908 | 0.909 | 0.909 | 0.908 |
Ship | 0.906 | 0.907 | 0.904 | 0.906 |
mAP | 0.931 | 0.950 | 0.935 | 0.952 |
Method | Backbone | mAP | FPS |
---|---|---|---|
SSD300 | VGG16 | 0.930 | 31.8 |
YOLOV3 | MobileNetV2 | 0.921 | 67.5 |
Dynamic R-CNN | Resnet50 | 0.931 | 9.5 |
Faster R-CNN | Resnet50 | 0.932 | 9.5 |
Faster R-CNN with FPN | Resnet50 | 0.935 | 9.4 |
Faster R-CNN with AOCNet | Resnet50 | 0.953 | 7.3 |
Method | Faster R-CNN | Faster R-CNN with AT (Ours) | Faster R-CNN with OC (Ours) | Faster R-CNN with AOCNet (Ours) |
---|---|---|---|---|
Airplane | 0.909 | 0.906 | 0.996 | 0.996 |
Ship | 0.813 | 0.803 | 0.810 | 0.808 |
Storage tank | 0.762 | 0.885 | 0.895 | 0.888 |
Baseball diamond | 0.900 | 0.957 | 0.909 | 0.975 |
Tennis court | 0.697 | 0.798 | 0.815 | 0.814 |
Basketball court | 0.810 | 0.869 | 0.893 | 0.882 |
Ground track field | 0.996 | 0.970 | 0.992 | 0.984 |
Harbor | 0.673 | 0.612 | 0.730 | 0.740 |
Bridge | 0.535 | 0.613 | 0.653 | 0.673 |
Vehicle | 0.782 | 0.836 | 0.793 | 0.797 |
mAP | 0.788 | 0.825 | 0.849 | 0.856 |
Targets | Precision | Recall | ||
---|---|---|---|---|
Wide FOV | Narrow FOV | Wide FOV | Narrow FOV | |
Car | 0.908 | 1.000 | 0.974 | 1.000 |
Carrier | 0.963 | 1.000 | 0.976 | 1.000 |
Truck gun | 0.802 | 0.839 | 0.604 | 0.867 |
UAV | 0.939 | 1.000 | 0.969 | 1.000 |
Ball | 0.932 | 0.904 | 0.976 | 0.977 |
Plane | 0.934 | 1.000 | 0.843 | 1.000 |
Person | 0.922 | 0.944 | 0.913 | 0.895 |
Tank | 0.911 | 1.000 | 0.952 | 1.000 |
mean | 0.913 | 0.961 | 0.901 | 0.967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Li, Z.; Cheng, B.; Yang, Y.; Siddique, A. A Target Imaging and Recognition Method Based on Raptor Vision. Remote Sens. 2023, 15, 2106. https://doi.org/10.3390/rs15082106
Xu B, Li Z, Cheng B, Yang Y, Siddique A. A Target Imaging and Recognition Method Based on Raptor Vision. Remote Sensing. 2023; 15(8):2106. https://doi.org/10.3390/rs15082106
Chicago/Turabian StyleXu, Bitong, Zhengzhou Li, Bei Cheng, Yuxin Yang, and Abubakar Siddique. 2023. "A Target Imaging and Recognition Method Based on Raptor Vision" Remote Sensing 15, no. 8: 2106. https://doi.org/10.3390/rs15082106
APA StyleXu, B., Li, Z., Cheng, B., Yang, Y., & Siddique, A. (2023). A Target Imaging and Recognition Method Based on Raptor Vision. Remote Sensing, 15(8), 2106. https://doi.org/10.3390/rs15082106