Distribution and Degradation Processes of Isolated Permafrost near Buried Oil Pipelines by Means of Electrical Resistivity Tomography and Ground Temperature Monitoring: A Case Study of Da Xing’anling Mountains, Northeast China
<p>Common oil and gas pipeline damages in permafrost regions. (<b>a</b>). The Medveje gas pipeline that once was buried and now is floating in a marsh, resulting partly from the thawing of the permafrost [<a href="#B19-remotesensing-15-00707" class="html-bibr">19</a>]; (<b>b</b>). Differential settlement of the workpad in an elevated pipeline segment of the Alaska pipeline [<a href="#B11-remotesensing-15-00707" class="html-bibr">11</a>]; (<b>c</b>). Frost heaving of the buried Norman Wells Pipeline in September 1997 [<a href="#B20-remotesensing-15-00707" class="html-bibr">20</a>]; (<b>d</b>). Frost heaving and deformation at Wuli of the Product Pipeline from Golmud to Lhasa in June 2002 [<a href="#B20-remotesensing-15-00707" class="html-bibr">20</a>]; (<b>e</b>). Surface subsidence occurs in some areas where the CRCOP crosses permafrost regions, resulting in the formation of ponds.</p> "> Figure 2
<p>A schematic diagram of the location of the monitoring site, MDS304, and photos were taken in the same location in 2013 and 2021 [<a href="#B38-remotesensing-15-00707" class="html-bibr">38</a>,<a href="#B39-remotesensing-15-00707" class="html-bibr">39</a>,<a href="#B43-remotesensing-15-00707" class="html-bibr">43</a>].</p> "> Figure 3
<p>Variations of the (<b>a</b>) MAAT and (<b>b</b>) annual precipitation at the Xinlin and Jiagedaqi meteorological stations along the CRCOP in the northern Da Xing’anling Mountains, Northeast China, 1972–2020. <span class="html-italic">R<sub>i</sub></span>: Rising rate, (<span class="html-italic">i</span> = J, X); J represents Jiagedaqi; X represents Xinlin station.</p> "> Figure 4
<p>Seasonal landscape near the MDS304 site in Jinsong Town: (<b>a</b>) After the fire has removed the surface vegetation, the bare surface can still be seen in the spring (18 April 2021); (<b>b</b>) Apparent surface subsidence and stagnant water within the pipeline right-of-way (7 May 2021); (<b>c</b>) Occasional floods in summer cover the entire valley (17 June 2021); (<b>d</b>) Typical wetland type vegetation can be seen on the surface in summer (14 August 2020); (<b>e</b>) Less vegetation after the fire and thick snow can be seen in winter (31 October 2019); (<b>f</b>) Thicker snow cover on roads and slopes in winter (31 October 2019).</p> "> Figure 5
<p>Geological characteristics of the MDS304 site, 0–15 m [<a href="#B42-remotesensing-15-00707" class="html-bibr">42</a>].</p> "> Figure 6
<p>Diagram for the ground temperature monitoring system at the MDS304 site (<b>e</b>), ground temperatures are measured using thermistor chains connected to a CR3000 data logger: (<b>a</b>) CR3000 data logger with a TRM128 multiplexer, (<b>b</b>) Wireless transmission module (HKT-DTU, Campbell Scientific, Inc., Logan, Utah, USA), (<b>c</b>) solar charge controller (Phocos ECO (10 A), UIm, Germany), and (<b>d</b>) battery cell [<a href="#B51-remotesensing-15-00707" class="html-bibr">51</a>]. The photo was taken on 18 April 2021. Note: T1,…, T7 is a ground temperature borehole; CRCOP-I: the CRCOP’s first line; CRCOP-II: the CRCOP’s second line.</p> "> Figure 7
<p>Researchers using the SuperSting R8 Polarization Meter to conduct ERT tests at the MDS304 site in Jinsong town on 18 April 2021 (<b>a</b>), and photo of SuperSting R8 Polarization Meter (<b>b</b>). This map view image was captured by UVA on 19 May 2022. Note: T1,…, T7 is a ground temperature borehole; CRCOP-I: the CRCOP’s first line; CRCOP-II: the CRCOP’s second line.</p> "> Figure 8
<p>Monthly average inlet and outlet oil temperatures of the Mohe, Tahe, and Jiagedaqi pumping stations (2011–2020) of the CRCOP’s first line.</p> "> Figure 9
<p>On 12 April 2018, an inversion profile of the ERT test results with an RMS error of 4.0% was obtained at the MDS304 site (Profile 1) (<b>a</b>), and the curve of ground temperature with a depth of borehole T1 and T3 (<b>b</b>). Note: T1,…, T4 is a ground temperature borehole; CRCOP-I: the CRCOP’s first line; CRCOP-II: the CRCOP’s second line.</p> "> Figure 10
<p>On 6 April 2019, an inversion profile of the ERT test results with an RMS error of 2.7% was obtained at the MDS304 site (Profile 1) (<b>a</b>), and the curve of ground temperature with a depth of borehole T1 and T3 (<b>b</b>). Note: T1,…, T6 is a ground temperature borehole; CRCOP-I: the CRCOP’s first line; CRCOP-II: the CRCOP’s second line.</p> "> Figure 11
<p>On 18 April 2021, an inversion profile of the ERT test results with an RMS error of 3.6% was obtained at the MDS304 site (Profile 1) (<b>a</b>), and the curve of ground temperature with a depth of borehole T1 and T3 (<b>b</b>). Note: T1,…, T6 is a ground temperature borehole; CRCOP-I: the CRCOP’s first line; CRCOP-II: the CRCOP’s second line.</p> "> Figure 12
<p>The cross-sectional isotherm profiles of the MDS304 site were drawn using the inverse distance weighting method from mid-April 2018 to mid-April 2022, including the ERT exploration period: (<b>a</b>) 12 April 2018, (<b>b</b>) 6 April 2019 (<b>c</b>) 15 April 2020 (<b>d</b>) 18 April 2021 and (<b>e</b>) 15 April 2022. Note: T3, T7 is a ground temperature borehole. The red circle represents the oil pipeline, and CRCOP-II and CRCOP-I are distributed sequentially from west to east.</p> "> Figure 13
<p>The cross-sectional isotherm profiles of the MDS304 site on 15 October 2019 (<b>a</b>) and 15 October 2021 (<b>b</b>) were drawn by using the inverse distance weighting method. Note: T3, T7 is a ground temperature borehole. The red circle represents the oil pipeline, and CRCOP-II and CRCOP-I are distributed sequentially from west to east.</p> "> Figure 14
<p>The correspondence between the ERT inversion profile and the cross-sectional isotherm profile of Profile 1 of the MDS304 site on 12 April 2018 (<b>a</b>), 6 April 2019 (<b>b</b>), and 18 April 2021 (<b>c</b>). Note: a blue dashed frame indicates the combination of an ERT inversion profile and an isotherm. T1,…, T7 is a ground temperature borehole. The red circle represents the oil pipeline, and CRCOP-II and CRCOP-I are distributed sequentially from west to east.</p> "> Figure 15
<p>Ground temperature curve of borehole T4 at about 5 m from the insulation pipeline at the MDS304 site, compared with data from Wang et al. (2019) [<a href="#B43-remotesensing-15-00707" class="html-bibr">43</a>].</p> ">
Abstract
:1. Introduction
2. Study Region
3. Data and Methods
3.1. Geological Information
3.2. Ground Temperature Monitoring
3.3. Oil Temperature Acquisition
3.4. Electrical Resistivity Tomography
4. Results
4.1. Characteristics of the CRCOP’s Oil Temperature Variation
4.2. ERT for Permafrost
4.3. Cross-Sectional Isotherm Profile Showing Isolated Permafrost Distribution
4.4. ERT and the Cross-Sectional Isotherm Profile for Imaging Permafrost and Talik
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M.M.B., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; IPCC: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 10 July 2022).
- Chadburn, S.E.; Burke, E.J.; Cox, P.M.; Friedlingstein, P.; Hugelius, G.; Westermann, S. An Observation-Based Constraint on Permafrost Loss as a Function of Global Warming. Nat. Clim. Change 2017, 7, 340–344. [Google Scholar] [CrossRef]
- Jin, H.; Li, S.; Cheng, G.; Shaoling, W.; Li, X. Permafrost and Climatic Change in China. Glob. Planet Change 2000, 26, 387–404. [Google Scholar] [CrossRef]
- Zhang, T. Progress in global permafrost and climate change studies. Quat. Sci. 2012, 32, 27–38. [Google Scholar] [CrossRef]
- Shan, W.; Guo, Y.; Zhang, C. Understanding the Geological Environmental Risks of Permafrost Degradation-Environmental and Engineering Geology in Permafrost Area in Northeast China; International Science Council: Paris, France, 2020. [Google Scholar]
- Chang, X.; Jin, H.; He, R.; Zhang, Y.; Li, X.; Jin, X.; Li, G. Permafrost Changes in the Northwestern Da Xing’anling Mountains, Northeast China, in the Past Decade. Earth Syst. Sci. Data. 2022, 14, 3947–3959. [Google Scholar] [CrossRef]
- Jin, H.; Yu, Q.; Lü, L.; Guo, D.; He, R.; Yu, S.; Sun, G.; Li, Y. Degradation of Permafrost in the Xing’anling Mountains, Northeastern China. Permafr. Periglac. Process. 2007, 18, 245–258. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W.; Mu, Y.; Zhou, Z.; Mao, Y. Permafrost Thawing along the China-Russia Crude Oil Pipeline and Countermeasures: A Case Study in Jiagedaqi, Northeast China. Cold Reg. Sci. Technol. 2018, 155, 308–313. [Google Scholar] [CrossRef]
- He, R.-X.; Jin, H.-J.; Luo, D.-L.; Li, X.-Y.; Zhou, C.-F.; Jia, N.; Jin, X.-Y.; Li, X.-Y.; Che, T.; Yang, X.; et al. Permafrost Changes in the Nanwenghe Wetlands Reserve on the Southern Slope of the Da Xing’anling—Yile’huli Mountains, Northeast China. Adv. Clim. Change Res. 2021, 12, 696–709. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Wu, Q.-B.; Hou, M.-T.; Tai, B.-W.; An, Y.-K. Permafrost Change in Northeast China in the 1950s–2010s. Adv. Clim. Change Res. 2021, 12, 18–28. [Google Scholar] [CrossRef]
- Metz, M.C.; Krzewinski, T.G.; Clarke, E.S. The Trans-Alaska Pipeline System Workpad—An Evaluation of Present Conditions. In Proceedings Fourth Canadian Permafrost Conference; National Research Council of Canada: Ottawa, ON, USA, 1982; pp. 523–534. [Google Scholar]
- Johnson, E.R. Performance of the Trans-Alaska Oil Pipeline. In International Conference on Permafrost, 4th, Fairbanks, Alaska, July 17–22, 1983; Final Proceedings; National Academy Press: Washington, DC, USA, 1984. [Google Scholar]
- Burgess, M.; Harry, D. Norman Wells Pipeline Permafrost and Terrain Monitoring: Geothermal and Geomorphic Observations, 1984–1987. Can. Geotech. J. 1990, 27, 233–244. [Google Scholar] [CrossRef]
- Nixon, J.F.; Burgess, M. Norman Wells Pipeline Settlement and Uplift Movements. Can. Geotech. J. 1999, 36, 119–135. [Google Scholar] [CrossRef]
- Yao, Z. Practice and preventive measures for removing ice blockage in Golmud-Lhasa pipeline. Pipeline Tech. Equip. 2003, 1, 24–27. [Google Scholar]
- Huang, S.L.; Bray, M.T.; Akagawa, S.; Fukuda, M. Field Investigation of Soil Heave by a Large Diameter Chilled Gas Pipeline Experiment, Fairbanks, Alaska. J. Cold Reg. Eng. 2004, 18, 2–34. [Google Scholar] [CrossRef]
- He, R.; Jin, H. Permafrost and Cold-Region Environmental Problems of the Oil Product Pipeline from Golmud to Lhasa on the Qinghai–Tibet Plateau and Their Mitigation. Cold Reg. Sci. Technol. 2010, 64, 279–288. [Google Scholar] [CrossRef]
- Li, G.; Ma, W.; Wang, L.; Jin, H.; Wang, Y.; Zhao, Y.; Cai, Y.; Zhang, P. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline. Rock Soil Mech. 2015, 36, 2963–2973. [Google Scholar] [CrossRef]
- Harris, S.A.; Brouchkov, A.; Guodong, C. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms; CRC Press: London, 2017; ISBN 978-1-315-16698-8. [Google Scholar]
- Jin, H.; Yu, W.; Chen, Y.; Gao, X.; Li, F.; Yao, Z. (Differential) Frost heave and thaw settlement in the engineering design and construction of oil pipelines in Permafrost Regions: A review. J. Glaciol. Geocryol. 2005, 27, 454–464. [Google Scholar]
- Shur, Y.L.; Jorgenson, M.T. Patterns of Permafrost Formation and Degradation in Relation to Climate and Ecosystems. Permafr. Periglac. 2007, 18, 7–19. [Google Scholar] [CrossRef]
- Jorgenson, M.T.; Harden, J.; Kanevskiy, M.; O’Donnell, J.; Wickland, K.; Ewing, S.; Manies, K.; Zhuang, Q.; Shur, Y.; Striegl, R.; et al. Reorganization of Vegetation, Hydrology and Soil Carbon after Permafrost Degradation across Heterogeneous Boreal Landscapes. Environ. Res. Lett. 2013, 8, 035017. [Google Scholar] [CrossRef]
- Osterkamp, T.E.; Romanovsky, V.E. Evidence for Warming and Thawing of Discontinuous Permafrost in Alaska. Permafr. Periglac. Processes 1999, 10, 17–37. [Google Scholar] [CrossRef]
- Panda, S.K.; Prakash, A.; Jorgenson, M.T.; Solie, D.N. Near-Surface Permafrost Distribution Mapping Using Logistic Regression and Remote Sensing in Interior Alaska. GIScience Remote Sens. 2012, 49, 346–363. [Google Scholar] [CrossRef]
- Douglas, T.A.; Jorgenson, M.T.; Brown, D.R.N.; Campbell, S.W.; Hiemstra, C.A.; Saari, S.P.; Bjella, K.; Liljedahl, A.K. Degrading Permafrost Mapped with Electrical Resistivity Tomography, Airborne Imagery and LiDAR, and Seasonal Thaw Measurements. Geophysics 2016, 81, WA71–WA85. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; He, R.; Huang, Y.; Wang, H.; Luo, D.; Jin, X.; Lü, L.; Wang, L.; Li, W.; et al. Effects of Forest Fires on the Permafrost Environment in the Northern Da Xing’anling (Hinggan) Mountains, Northeast China. Permafr. Periglac. Processes 2019, 30, 163–177. [Google Scholar] [CrossRef]
- Guo, Y.; Shan, W.; Xu, Z.; Wang, C.; Wang, S. Identification Old Landslides in Permafrost Degradation Area in Northeast China by Difference Distribution of Surface Trees. In Understanding and Reducing Landslide Disaster Risk; ICL Contribution to Landslide Disaster Risk Reduction; Vilímek, V., Wang, F., Strom, A., Sassa, K., Bobrowsky, P.T., Takara, K., Eds.; Springer: Cham, Switzerland, 2021; pp. 275–281. ISBN 978-3-030-60318-2. [Google Scholar]
- Jin, X.; Jin, H.; Iwahana, G.; Marchenko, S.S.; Luo, D.; Li, X.; Liang, S. Impacts of Climate-Induced Permafrost Degradation on Vegetation: A Review. Adv. Clim. Change Res. 2021, 12, 29–47. [Google Scholar] [CrossRef]
- Hauck, C.; Kneisel, C. Applied Geophysics in Periglacial Environments. In Applied Geophysics in Periglacial Environments; Cambridge University Press: Cambridge, UK, 2008; pp. 1–240. ISBN 978-0-521-88966-7. [Google Scholar]
- Hauck, C. New Concepts in Geophysical Surveying and Data Interpretation for Permafrost Terrain. Permafr. Periglac. Processes 2013, 24, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Yoshikawa, K. Permafrost Age and Thickness near Adventfjorden, Spitsbergen. Polar Geogr. 1996, 20, 267–281. [Google Scholar] [CrossRef]
- Sjöberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S.W. Geophysical Mapping of Palsa Peatland Permafrost. Cryosphere 2015, 9, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Lewkowicz, A.G.; Etzelmüller, B.; Smith, S.L. Characteristics of Discontinuous Permafrost Based on Ground Temperature Measurements and Electrical Resistivity Tomography, Southern Yukon, Canada. Permafr. Periglac. Processes 2011, 22, 320–342. [Google Scholar] [CrossRef]
- Hubbard, S.S.; Gangodagamage, C.; Dafflon, B.; Wainwright, H.; Peterson, J.; Gusmeroli, A.; Ulrich, C.; Wu, Y.; Wilson, C.; Rowland, J.; et al. Quantifying and Relating Land-Surface and Subsurface Variability in Permafrost Environments Using LiDAR and Surface Geophysical Datasets. Hydrogeol. J. 2013, 21, 149–169. [Google Scholar] [CrossRef]
- You, Y.; Yu, Q.; Pan, X.; Wang, X.; Guo, L. Geophysical Imaging of Permafrost and Talik Configuration Beneath a Thermokarst Lake: Imaging Permafrost and Talik of a Thermokarst Lake. Permafrost Periglac. 2017, 28, 470–476. [Google Scholar] [CrossRef]
- Duvillard, P.-A.; Magnin, F.; Revil, A.; Legay, A.; Ravanel, L.; Abdulsamad, F.; Coperey, A. Temperature Distribution in a Permafrost-Affected Rock Ridge from Conductivity and Induced Polarization Tomography. Geophys. J. Int. 2021, 225, 1207–1221. [Google Scholar] [CrossRef]
- Li, X.; Jin, X.; Wang, X.; Jin, H.; Tang, L.; Li, X.; He, R.; Li, Y.; Huang, C.; Zhang, S. Investigation of Permafrost Engineering Geological Environment with Electrical Resistivity Tomography: A Case Study along the China-Russia Crude Oil Pipelines. Eng. Geol. 2021, 291, 106237. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Li, G. Investigation of the Freeze–Thaw States of Foundation Soils in Permafrost Areas along the China–Russia Crude Oil Pipeline (CRCOP) Route Using Ground-Penetrating Radar (GPR). Cold Reg. Sci. Technol. 2016, 126, 10–21. [Google Scholar] [CrossRef]
- Jin, H.; Hao, J.; Chang, X.; Zhang, J.; Yu, Q.; Qi, J.; Lü, L.; Wang, S. Zonation and Assessment of Frozen-Ground Conditions for Engineering Geology along the China–Russia Crude Oil Pipeline Route from Mo’he to Daqing, Northeastern China. Cold Reg. Sci. Technol. 2010, 64, 213–225. [Google Scholar] [CrossRef]
- Chang, X.; Jin, H.; He, R.; Jing, H.; Li, G.; Wang, Y.; Luo, D.; Yu, S.; Sun, H. Review of permafrost monitoring in the northern Da Hinggan Mountains, Northeast China. J. Glaciol. Geocryol. 2013, 35, 93–100. [Google Scholar] [CrossRef]
- Li, G.; Wang, F.; Ma, W.; Fortier, R.; Mu, Y.; Zhou, Z.; Mao, Y.; Cai, Y. Field Observations of Cooling Performance of Thermosyphons on Permafrost under the China-Russia Crude Oil Pipeline. Appl. Therm. Eng. 2018, 141, 688–696. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W.; Wu, Q.; Serban, M.; Vera, S.; Alexandr, F.; Jiang, N.; Wang, B. Pipeline–Permafrost Interaction Monitoring System along the China–Russia Crude Oil Pipeline. Eng. Geol. 2019, 254, 113–125. [Google Scholar] [CrossRef]
- Wang, F.; Li, G.; Ma, W.; Mao, Y.; Mu, Y.; Serban, M.; Cai, Y. Permafrost Warming along the Mo’he-Jiagedaqi Section of the China-Russia Crude Oil Pipeline. J. Mt. Sci. 2019, 16, 285–295. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, D.; Qiu, G.; Cheng, G.; Li, S. Geocryology in China; Science Press: Beijing, China, 2000; pp. 170–194. [Google Scholar]
- Wei, Z.; Jin, H.; Zhang, J.; Yu, S.; Han, X.; Ji, Y.; He, R.; Chang, X. Prediction of Permafrost Changes in Northeastern China under a Changing Climate. Sci. China Earth Sci. 2011, 54, 924–935. [Google Scholar] [CrossRef]
- Jin, H.; Sun, G.; Yu, S.; Jin, R.; He, R. Symbiosis of Marshes and Permafrost in Da and Xiao Hinggan Mountains in Northeastern China. Chin. Geogr. Sci. 2008, 18, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Jin, H.; Zhang, Y.; Sun, H. Study of seasonal snow cover influencing the ground thermal regime on western flank of Da Xing’anling Mountains, northeastern China. Sci. Cold Arid Reg. 2015, 7, 666–674. [Google Scholar]
- Jin, H.; Yu, S.; Lv, L.; Guo, D.; Li, Y. Degradation of permafrost in the Da and Xiao Hinggn Mountains, Northeast China, and preliminary assessment of its trend. J. Glaciol. Geocryol. 2006, 28, 467–476. [Google Scholar]
- Wang, Y.; Jin, H.; Hao, J.-Q.; Li, G.; Cai, Y.; He, S. Pipe-Laying Technology in a Subarctic Permafrost Region: A Case Study for the China-Russia Crude Oil Pipeline from Mo’ He to Daqing, Northern Northeast China. In Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference, Quebec, QC, Canada, 20–23 September 2015. [Google Scholar]
- You, Y.; Yu, Q.; Pan, X.; Wang, X.; Guo, L. Application of Electrical Resistivity Tomography in Investigating Depth of Permafrost Base and Permafrost Structure in Tibetan Plateau. Cold Reg. Sci. Technol. 2013, 87, 19–26. [Google Scholar] [CrossRef]
- Li, G.; Ma, W.; Wang, F.; Jin, H.; Alexander, F.; Chen, D.; Wu, G.; Cao, Y.; Zhou, Y.; Mu, Y.; et al. A Newly Integrated Ground Temperature Dataset of Permafrost along the China-Russia Crude Oil Pipeline Route in Northeast China. Earth Syst. Sci. Data Discuss. 2022, 14, 5093–5110. [Google Scholar] [CrossRef]
- Li, G.; Sheng, Y.; Jin, H.; Ma, W.; Qi, J.; Wen, Z.; Zhang, B.; Mu, Y.; Bi, G. Forecasting the Oil Temperatures along the Proposed China–Russia Crude Oil Pipeline Using Quasi 3-D Transient Heat Conduction Model. Cold Reg. Sci. Technol. 2010, 64, 235–242. [Google Scholar] [CrossRef]
- Dahlin, T.; Zhou, B. A Numerical Comparison of 2D Resistivity Imaging with 10 Electrode Arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef]
- Liu, H.; Niu, F.; Niu, Y.; Xu, J.; Wang, T. Effect of Structures and Sunny–Shady Slopes on Thermal Characteristics of Subgrade along the Harbin–Dalian Passenger Dedicated Line in Northeast China. Cold Reg. Sci. Technol. 2016, 123, 14–21. [Google Scholar] [CrossRef]
- Hilbich, C.; Marescot, L.; Hauck, C.; Loke, M.H.; Mäusbacher, R. Applicability of Electrical Resistivity Tomography Monitoring to Coarse Blocky and Ice-Rich Permafrost Landforms. Permafr. Periglac. 2009, 20, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Grifka, J.; Weigand, M.; Kemna, A.; Heinze, T. Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides. Land 2022, 11, 1207. [Google Scholar] [CrossRef]
- Hauck, C.; Mühll, D.V. Inversion and Interpretation of Two-Dimensional Geoelectrical Measurements for Detecting Permafrost in Mountainous Regions. Permafr. Periglac. Processes 2003, 14, 305–318. [Google Scholar] [CrossRef]
- Loke, M.H.; Acworth, I.; Dahlin, T. A Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Olayinka, A.I.; Yaramanci, U. Use of Block Inversion in the 2-D Interpretation of Apparent Resistivity Data and Its Comparison with Smooth Inversion. J. Appl. Geophys. 2000, 45, 63–81. [Google Scholar] [CrossRef]
- Smith, T.; Hoversten, M.; Gasperikova, E.; Morrison, F. Sharp Boundary Inversion of 2D Magnetotelluric Data. Geophys. Prospect. 1999, 47, 469–486. [Google Scholar] [CrossRef]
- Forte, E.; French, H.M.; Raffi, R.; Santin, I.; Guglielmin, M. Investigations of Polygonal Patterned Ground in Continuous Antarctic Permafrost by Means of Ground Penetrating Radar and Electrical Resistivity Tomography: Some Unexpected Correlations. Permafr. Periglac. Processes 2022, 33, 226–240. [Google Scholar] [CrossRef]
- Cao, Y.; Li, G.; Wu, G.; Chen, D.; Gao, K.; Tang, L.; Jia, H.; Che, F. Proposal of a New Method for Controlling the Thaw of Permafrost around the China–Russia Crude Oil Pipeline and a Preliminary Study of Its Ventilation Capacity. Water 2021, 13, 2908. [Google Scholar] [CrossRef]
- Mu, Y.; Li, G.; Wei, M.; Zhengmin, S.; Zhou, Z.; Wang, F. Rapid Permafrost Thaw Induced by Heat Loss from a Buried Warm-Oil Pipeline and a New Mitigation Measure Combining Seasonal Air-Cooled Embankment and Pipe Insulation. Energy 2020, 203, 117919. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Bolton, W.R.; Romanovsky, V.E.; Fukuda, M.; Hinzman, L.D. Impacts of Wildfire on the Permafrost in the Boreal Forests of Interior Alaska. J. Geophys. Res. 2002, 108, 8148. [Google Scholar] [CrossRef] [Green Version]
- Wendler, G.; Conner, J.; Moore, B.; Shulski, M.; Stuefer, M. Climatology of Alaskan Wildfires with Special Emphasis on the Extreme Year of 2004. Theor. Appl. Climatol. 2011, 104, 459–472. [Google Scholar] [CrossRef]
- Brown, D.R.N.; Jorgenson, M.T.; Douglas, T.A.; Romanovsky, V.E.; Kielland, K.; Hiemstra, C.; Euskirchen, E.S.; Ruess, R.W. Interactive Effects of Wildfire and Climate on Permafrost Degradation in Alaskan Lowland Forests. J. Geophys. Res. Biogeosciences 2015, 120, 1619–1637. [Google Scholar] [CrossRef]
- Chai, M.T.; Mu, Y.H.; Li, G.Y.; Ma, W.; Wang, F. Relationship between ponding and topographic factors along the China-Russia Crude Oil Pipeline in permafrost regions. Sci. Cold Arid Reg. 2019, 11, 419–427. [Google Scholar]
- Chai, M.; Li, G.; Wei, M.; Cao, Y.; Gang, W.; Mu, Y.; Chen, D.; Jun, Z.; Zhou, Z.; Yu, Z.; et al. Assessment of Freeze-Thaw Hazards and Water Features along the China-Russia Crude Oil Pipeline in Permafrost Regions. Remote Sens. 2020, 12, 3576. [Google Scholar] [CrossRef]
- Mu, Y.; Chai, M. Thermal influence of ponding and buried warm-oil pipelines on permafrost: A case study of the China-Russia Crude Oil Pipeline. Sci. Cold Arid Reg. 2020, 12, 59–70. [Google Scholar] [CrossRef]
Station | MAAT (℃) | MjanAT (℃) | MjulAT (℃) | EAT (℃) | MAP (mm) |
---|---|---|---|---|---|
Xinlin | −2.5 | −25.5 | 18.2 | −46.9/37.9 | 533.5 |
Jiagedaqi | −0.4 | −22.6 | 19.5 | −27.8/22.5 | 540.4 |
The Distance from Borehole T3 (m) | Borehole | Monitoring Depth (m) | Measuring Internal | Working Period |
---|---|---|---|---|
0 | T3 | 0.3, −0.2, −0.7, −1.2, −1.7, −2.2, −2.7, −3.2, −3.7, −4.7, −5.7, −6.7, −7.7, −8.7, −9.7, −10.7, −11.7, −12.7, −13.7, −14.7, −15.7, −16.7, −17.7, −18.7, −19.7 | 25, 2 h, Auto | October 2017–Now |
22 | T1 | 0, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −5, −6, −7, −8, −9, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 | 25, 2 h, Auto | October 2017–Now |
25 | T2 | 0, −0.5, −1, −1.5, −2, −2.5, −3, −3.5, −4, −5, −6, −7, −8, −9, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 | 25, 2 h, Auto | October 2017–Now |
37 | T4 | 0.1, −0.4, −0.9, −1.4, −1.9, −2.4, −2.9, −3.4, −3.9, −4.9, −5.9, −6.9, −7.9, −8.9, −9.9, −10.9, −11.9, −12.9, −13.9, −14.9 | 20, 2 h, Auto | November 2011–Now |
57 | T6 | 0, −0.5, −1, −1.5, −2, −2.5, −3, −4, −5, −6, −7, −8, −9, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 | 24, 2 h, Auto | December 2018–Now |
80 | T7 | 0, −0.5, −1, −1.5, −2, −2.5, −3, −4, −5, −6, −7, −8, −9, −10, −11, −12, −13, −14, −15, −16, −17, −18, −19, −20 | 24, 2 h, Auto | December 2018–Now |
Pump Station | The Distance to Mohe Station | Monthly Average Oil Temperature | 2012 | 2018 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | Min | Max | Average | |||
Mohe | 0 km | Inlet | 0.42 | 10.71 | 5.24 | 12.38 | 23.19 | 17.39 | 19.96 | 26.15 | 23.30 |
Outlet | 3.04 | 13.84 | 8.09 | 12.58 | 24.58 | 18.35 | 20.47 | 27.74 | 23.78 | ||
Tahe | 156.5 km | Inlet | 1.55 | 12.03 | 6.25 | 6.64 | 16.86 | 11.38 | 12.11 | 18.41 | 14.75 |
Outlet | 1.41 | 11.92 | 6.16 | 7.13 | 18.06 | 12.39 | 13.24 | 20.39 | 16.15 | ||
Jiagedaqi | 390 km | Inlet | 0.90 | 9.07 | 4.41 | 3.33 | 11.66 | 7.02 | 6.03 | 11.79 | 8.90 |
Outlet | 2.01 | 10.28 | 5.65 | 4.38 | 12.70 | 8.04 | 7.25 | 12.86 | 10.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Li, G.; Cao, Y.; Chen, D.; Qi, S.; Wang, F.; Gao, K.; Du, Q.; Wang, X.; Jing, H.; et al. Distribution and Degradation Processes of Isolated Permafrost near Buried Oil Pipelines by Means of Electrical Resistivity Tomography and Ground Temperature Monitoring: A Case Study of Da Xing’anling Mountains, Northeast China. Remote Sens. 2023, 15, 707. https://doi.org/10.3390/rs15030707
Wu G, Li G, Cao Y, Chen D, Qi S, Wang F, Gao K, Du Q, Wang X, Jing H, et al. Distribution and Degradation Processes of Isolated Permafrost near Buried Oil Pipelines by Means of Electrical Resistivity Tomography and Ground Temperature Monitoring: A Case Study of Da Xing’anling Mountains, Northeast China. Remote Sensing. 2023; 15(3):707. https://doi.org/10.3390/rs15030707
Chicago/Turabian StyleWu, Gang, Guoyu Li, Yapeng Cao, Dun Chen, Shunshun Qi, Fei Wang, Kai Gao, Qingsong Du, Xinbin Wang, Hongyuan Jing, and et al. 2023. "Distribution and Degradation Processes of Isolated Permafrost near Buried Oil Pipelines by Means of Electrical Resistivity Tomography and Ground Temperature Monitoring: A Case Study of Da Xing’anling Mountains, Northeast China" Remote Sensing 15, no. 3: 707. https://doi.org/10.3390/rs15030707