Mapping Large-Scale Bamboo Forest Based on Phenology and Morphology Features
<p>Study area. Boundaries and field-ground truth samples are labelled in the figure (<b>a</b>). The altitude profile is displayed in the subpanel. The altitude profile representing the average altitude of pixels with the same latitude is displayed in the panel (<b>b</b>). The relative position of the study area is shown in panel (<b>c</b>).</p> "> Figure 2
<p>Example of time-series patterns for typical vegetation categories (bamboo, deciduous forest, evergreen woody forest and crop land). Solid lines in this figure represent the average of all field samples. The NDVI, EVI and red-edge reflectance from 2019 to 2020 are shown in panels (<b>a</b>–<b>c</b>), respectively. The difference in the peak value for the EVI and red-edge band (<math display="inline"><semantics> <mrow> <mi>d</mi> <mi>i</mi> <mi>f</mi> <msub> <mi>f</mi> <mrow> <mi>E</mi> <mi>V</mi> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>d</mi> <mi>i</mi> <mi>f</mi> <msub> <mi>f</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>d</mi> <mo>−</mo> <mi>e</mi> <mi>d</mi> <mi>g</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>) is demonstrated in panels (<b>b</b>,<b>c</b>). The fitting slope for the red-edge reflectance in the green-up season (shade area) is demonstrated in panel (<b>c</b>).</p> "> Figure 3
<p>Workflow of this study. Data and features are represented by blocks. RF in the circle represents the random forest classifier. The numbers in the brackets represent the numbers of features and timesteps. Blue and orange colour represents the data preparation and classification-validation steps, respectively.</p> "> Figure 4
<p>Temporal patterns for different categories. (<b>a</b>–<b>f</b>) display the temporal patterns for the reflectance of six bands. (<b>g</b>–<b>k</b>) display the temporal patterns for five vegetation indices. The shade of each line represents the standard error calculated from all field samples.</p> "> Figure 5
<p>Static patterns for different categories. The width of each violin represents the relative density at different values. The black line is the median of each category;(<b>a</b>,<b>b</b>) display the topography patterns; (<b>c</b>–<b>f</b>) display the phenology patterns; (<b>g</b>–<b>i</b>) display morphological patterns. BF = bamboo forest, DF = deciduous forest, EF = evergreen woody forest, CRO = cropland, AS = artificial surface, BAR = barren, WS = water surface. Different colour represents different categories.</p> "> Figure 6
<p>Spatial distribution of classification result. Abbreviation has the same meaning as in <a href="#remotesensing-15-00515-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>Comparison of bamboo area proportion (%) in this study and China’s Third National Land Survey. The linear fitted line and 1:1 line (y = x) are labelled in the figure by solid line and dashed line respectively. R<sup>2</sup> represents the correlation coefficient, and RMSE represents the root mean square error. N is the number of sample plots.</p> "> Figure 8
<p>Relative importance for input features.</p> "> Figure 9
<p>Relationship between result overall accuracy and sample size (%). Two feature schemes are compared: with four phenology and three morphology features and without these seven features.</p> "> Figure 10
<p>Map of yearly global cloud frequency and terrestrial bamboo forest in mainland China. Cloud frequency is calculated using the quality control band from MODerate-resolution Imaging Spectroradiometer (MODIS) observations from 2003 to 2020. Provinces with bamboo distribution in China are labelled according to Qi et al. (2022) [<a href="#B1-remotesensing-15-00515" class="html-bibr">1</a>]. The boxplot in the subpanel displays the distribution of cloud frequency in this region.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Field Samples
2.2.2. Remote Sensing Data
2.2.3. Statistical Data
2.3. Workflow
3. Results
3.1. Patterns for Time-Series and Static Features
3.2. Classification Results
3.3. Feature Contribution
4. Discussion
4.1. Success of Mapping Bamboo Forests Based on Phenology and Morphology Features
4.2. Mapping Bamboo at a Larger Scale
4.3. The Optimal Time Window for Bamboo Classification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, S.; Song, B.; Liu, C.; Gong, P.; Luo, J.; Zhang, M.; Xiong, T. Bamboo Forest Mapping in China Using the Dense Landsat 8 Image Archive and Google Earth Engine. Remote Sens. 2022, 14, 762. [Google Scholar] [CrossRef]
- Jian, J.; Jiang, H.; Zhou, G.; Jiang, Z.; Yu, S.; Peng, S.; Liu, S.; Wang, J. Mapping the vegetation changes in giant panda habitat using Landsat remotely sensed data. Int. J. Remote Sens. 2011, 32, 1339–1356. [Google Scholar] [CrossRef]
- Manandhar, R.; Kim, J.-H.; Kim, J.-T. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J. Asian Archit. Build. Eng. 2019, 18, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zhi, Z.; Mao-Yi, F.; Jin-Zhong, X.; Xiao-Sheng, Y.; Zheng-Cai, L. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. [Google Scholar] [CrossRef]
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of carbon fixation in bamboo forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Churkina, G.; Organschi, A.; Reyer, C.P.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar] [CrossRef]
- Dong, J.; Kuang, W.; Liu, J. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-I. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. J. Appl. Remote Sens. 2018, 12, 026019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-date paddy rice extent at 10 m resolution in china through the integration of optical and synthetic aperture radar images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Yeom, J.; Jung, J.; Chang, A.; Ashapure, A.; Maeda, M.; Maeda, A.; Landivar, J. Comparison of vegetation indices derived from UAV data for differentiation of tillage effects in agriculture. Remote Sens. 2019, 11, 1548. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore III, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Campos, J.C.; Sillero, N.; Brito, J.C. Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara–Sahel transition zone. J. Hydrol. 2012, 464, 438–446. [Google Scholar] [CrossRef]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient identification of corn cultivation area with multitemporal synthetic aperture radar and optical images in the google earth engine cloud platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.-T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Chen, Z.; White, L.; Banks, S.; Behnamian, A.; Montpetit, B.; Pasher, J.; Duffe, J.; Bernard, D. Characterizing marsh wetlands in the Great Lakes Basin with C-band InSAR observations. Remote Sens. Environ. 2020, 242, 111750. [Google Scholar] [CrossRef]
- Hill, R.; Wilson, A.; George, M.; Hinsley, S. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Wilson, E.H.; Barrett, N.; Civco, D.L.; Prisloe, S.; Hurd, J.D.; Chadwick, C. Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens. Environ. 2008, 112, 4048–4060. [Google Scholar] [CrossRef]
- Madonsela, S.; Cho, M.A.; Mathieu, R.; Mutanga, O.; Ramoelo, A.; Kaszta, Ż.; Van De Kerchove, R.; Wolff, E. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 65–73. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Han, N.; Ge, H.; Gu, C. Multi-scale segmentation, object-based extraction of moso bamboo forest from SPOT5 imagery. Sci. Silvae Sin. 2013, 49, 80–87. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Liu, C.; Xiong, T.; Gong, P.; Qi, S. Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: A case study in Fujian Province, China. Remote Sens. Lett. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Rußwurm, M.; Wang, S.; Korner, M.; Lobell, D. Meta-learning for few-shot land cover classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Virtual, 14–19 June 2020; pp. 200–201. [Google Scholar]
- Li, L.; Li, N.; Lu, D.; Chen, Y. Mapping Moso bamboo forest and its on-year and off-year distribution in a subtropical region using time-series Sentinel-2 and Landsat 8 data. Remote Sens. Environ. 2019, 231, 111265. [Google Scholar] [CrossRef]
- Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series. Remote Sens. 2019, 11, 523. [Google Scholar] [CrossRef] [Green Version]
- Michałowska, M.; Rapiński, J. A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sens. 2021, 13, 353. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Hu, T.; Yang, Q.; Liu, B.; Deng, Y.; Tang, H.; Tang, Z.; Fang, J.; Guo, Q. Neural network guided interpolation for mapping canopy height of China’s forests by integrating GEDI and ICESat-2 data. Remote Sens. Environ. 2022, 269, 112844. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Jiang, H.; Fang, C.; Yang, J.; Zhu, Z.; Shi, L.; Liu, S.; Gong, P. Tracking bamboo dynamics in Zhejiang, China, using time-series of Landsat data from 1990 to 2014. Int. J. Remote Sens. 2016, 37, 1714–1729. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Li, P.; Zhou, G.; Du, H.; Lu, D.; Mo, L.; Xu, X.; Shi, Y.; Zhou, Y. Current and potential carbon stocks in Moso bamboo forests in China. J. Environ. Manag. 2015, 156, 89–96. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4. CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on 12 January 2023).
- Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle, O. Cloud Mask Intercomparison eXercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.; Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Geissler, G.; Zhang, G.; Cejda, N.; Alikhani, B.; Doughty, R.B. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images. Remote Sens. Environ. 2017, 190, 233–246. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Li, G.; Moran, E.; Dutra, L.; Batistella, M. The roles of textural images in improving land-cover classification in the Brazilian Amazon. Int. J. Remote Sens. 2014, 35, 8188–8207. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, P.; Qi, S.; Liu, C.; Xiong, T. Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. Int. J. Remote Sens. 2019, 40, 9541–9555. [Google Scholar] [CrossRef]
- Zhang, M.; Keenan, T.F.; Luo, X.; Serra-Diaz, J.M.; Li, W.; King, T.; Cheng, Q.; Li, Z.; Andriamiarisoa, R.L.; Raherivelo, T.N.A.N. Elevated CO2 moderates the impact of climate change on future bamboo distribution in Madagascar. Sci. Total Environ. 2022, 810, 152235. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.M.; Jiao, X.; Flores-de-Santiago, F.; Zhang, C.; Flores-Verdugo, F. Assessing relationships between Radarsat-2 C-band and structural parameters of a degraded mangrove forest. Int. J. Remote Sens. 2013, 34, 7002–7019. [Google Scholar] [CrossRef]
- Touzi, R.; Deschamps, A.; Rother, G. Phase of target scattering for wetland characterization using polarimetric C-band SAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3241–3261. [Google Scholar] [CrossRef]
- Tan, S.; Zhang, X.; Wang, H.; Yu, L.; Du, Y.; Yin, J.; Wu, B. A CNN-Based Self-Supervised Synthetic Aperture Radar Image Denoising Approach. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
Product | Variable | Time Interval | Website |
---|---|---|---|
Sentinel-2 Level 2A | RS reflectance | Monthly | https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a (accessed on 12 January 2023) |
Vegetation indices | Monthly | ||
Phenology | Yearly | ||
Morphology | Static | ||
SRTM | Elevation | Static | https://srtm.csi.cgiar.org/ (accessed on 12 January 2023) |
Slope | |||
Aspect | |||
NNGI | Tree height | Static | http://www.3decology.org/dataset-software/ (accessed on 12 January 2023) |
Index | Equation |
---|---|
NDVI | |
EVI | |
GCVI | |
MTCI | |
LSWI |
Predicted Label | |||||||||
---|---|---|---|---|---|---|---|---|---|
BF | DF | EF | CRO | AS | BAR | WS | UA | ||
Field samples | BF | 65 | 4 | 2 | 0 | 0 | 0 | 0 | 0.92 |
DF | 4 | 32 | 1 | 0 | 0 | 0 | 0 | 0.86 | |
EF | 3 | 3 | 66 | 0 | 0 | 0 | 0 | 0.92 | |
CRO | 0 | 1 | 0 | 63 | 2 | 0 | 0 | 0.95 | |
AS | 0 | 0 | 2 | 4 | 20 | 2 | 0 | 0.71 | |
BAR | 0 | 0 | 0 | 0 | 5 | 7 | 0 | 0.58 | |
WS | 0 | 0 | 0 | 1 | 0 | 0 | 10 | 0.91 | |
PA | 0.90 | 0.80 | 0.93 | 0.93 | 0.74 | 0.78 | 1.00 | OA = 0.89 | |
F1-score | 0.91 | 0.83 | 0.92 | 0.94 | 0.73 | 0.67 | 0.95 |
Window | Item | BF | DF | EF | CRO | AS | BAR | WT | OA |
---|---|---|---|---|---|---|---|---|---|
1-month | Mean | 0.53 | 0.54 | 0.67 | 0.51 | 0.57 | 0.53 | 0.84 | 0.57 |
Std | 0.15 | 0.12 | 0.16 | 0.2 | 0.13 | 0.16 | 0.71 | 0.13 | |
4-month | Mean | 0.77 | 0.77 | 0.81 | 0.8 | 0.77 | 0.72 | 0.91 | 0.77 |
Std | 0.09 | 0.15 | 0.04 | 0.07 | 0.05 | 0.07 | 0.01 | 0.03 | |
6-month | Mean | 0.81 | 0.86 | 0.88 | 0.81 | 0.8 | 0.73 | 0.85 | 0.86 |
Std | 0.04 | 0.07 | 0.02 | 0.03 | 0.03 | 0.09 | 0.02 | 0.02 | |
12-month | Mean | 0.86 | 0.91 | 0.92 | 0.88 | 0.81 | 0.72 | 0.90 | 0.87 |
Std | 0.02 | 0 | 0.01 | 0.01 | 0.02 | 0.07 | 0.02 | 0.03 | |
24-month | Mean | 0.91 | 0.9 | 0.92 | 0.90 | 0.73 | 0.67 | 0.92 | 0.88 |
Std | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Tan, S.; Dong, Y.; Zhang, X.; Xu, J.; Zhong, L.; Yu, L. Mapping Large-Scale Bamboo Forest Based on Phenology and Morphology Features. Remote Sens. 2023, 15, 515. https://doi.org/10.3390/rs15020515
Feng X, Tan S, Dong Y, Zhang X, Xu J, Zhong L, Yu L. Mapping Large-Scale Bamboo Forest Based on Phenology and Morphology Features. Remote Sensing. 2023; 15(2):515. https://doi.org/10.3390/rs15020515
Chicago/Turabian StyleFeng, Xueliang, Shen Tan, Yun Dong, Xin Zhang, Jiaming Xu, Liheng Zhong, and Le Yu. 2023. "Mapping Large-Scale Bamboo Forest Based on Phenology and Morphology Features" Remote Sensing 15, no. 2: 515. https://doi.org/10.3390/rs15020515