Dry Matter Yield and Nitrogen Content Estimation in Grassland Using Hyperspectral Sensor
<p>Design of experimental fields: (<b>a</b>) Wageningen test site (clay soil); (<b>b</b>) De Marke test site (sandy soil).</p> "> Figure 2
<p>Sensors used to measure grass in the field experiment.</p> "> Figure 3
<p>Histograms of measured data during harvest in 2019 and 2020: (<b>a</b>) DMY in 2019 and 2020; (<b>b</b>) NC in 2019 and 2020; (<b>c</b>) Grass height in 2019 and 2020. The width of the graph represents the number of samples, while Y-axis corresponds to the measured variables. The measurement of DMY and NC were conducted by using the absolute dry method and the “digestion H<sub>2</sub>SO<sub>4</sub>-H<sub>2</sub>O<sub>2</sub>-Se; SFA-Nt/Pt” method, respectively. In addition, grass height was measured by ultrasonic sensor.</p> "> Figure 4
<p>Flowchart of data pre-process of measured data.</p> "> Figure 5
<p>Structure of random forest regressor.</p> "> Figure 6
<p>Plots of ground truth and predicted values. X-axis represents the ground truth data of the test dataset. In contrast, the Y-axis represents the predicted values by random forest regressor model using input features of the test data set. (<b>a</b>) DMY using hyperspectral data as input; (<b>b</b>) DMY using hyperspectral data and height data; (<b>c</b>) NC using hyperspectral data as input; (<b>d</b>) NC using hyperspectral data and height data.</p> "> Figure 7
<p>The cumulative contribution rate of components from PCA. The X-axis represents PCs sorted in ascending order of contribution rate, while the bar and line charts of the Y-axis represent contribution rates and cumulative contribution rates, respectively.</p> "> Figure 8
<p>X-loadings analysis of Principal Component Analysis (PCA). X-axis represents wavelength of feature (Unit: nm) while Y-axis represents X-loading values of Principal Components.</p> "> Figure 9
<p>Importance of features of random forest regressor. (<b>a</b>) Trained to estimate DMY from hyper spectrum; (<b>b</b>) Trained to estimate DMY from the hyper spectrum with grass height. X-axis represents the wavelength of the feature (Unit: nm) or grass height (indicated as height), while the Y-axis represents the importance of features.</p> "> Figure 10
<p>Importance of features of random forest regressor. (<b>a</b>) Trained to estimate NC from hyper spectrum; (<b>b</b>) Trained to estimate NC from the hyper spectrum with grass height. X-axis represents the wavelength of feature (Unit: nm) or grass height (indicated as height) while Y-axis represents the importance of features.</p> "> Figure 11
<p>Shapley additive explanations (SHAP) value analysis for DMY. X-axis represents SHAP value while Y-axis represents wavelength of feature (Unit: nm). Color represents the reflection value of each feature.</p> "> Figure 12
<p>Shapley additive explanations (SHAP) value transition over feature value of random forest regressor to estimate DM content. (<b>a</b>) SHAP value for the feature of 962 nm; (<b>b</b>) SHAP value for the feature of 916 nm. X-axis represents feature value while Y-axis represents SHAP value.</p> "> Figure 13
<p>Shapley additive explanations (SHAP) value analysis for NC. X-axis represents SHAP value while Y-axis represents the wavelength of the feature (Unit: nm).</p> "> Figure 14
<p>Shapley additive explanations (SHAP) value transition over feature value of random forest regressor to estimate NC. (<b>a</b>) SHAP value for the feature of 710 nm; (<b>b</b>) SHAP value for the feature of 940 nm. X-axis represents feature value while Y-axis represents SHAP value.</p> "> Figure A1
<p>Normal and outlier spectrum separated by isolation forest: (<b>a</b>) Normal data separated from all the measurement hyper spectrum data by isolation forest (n = 4154); (<b>b</b>) Remaining outliers separated by isolation forest (n = 904). X-axis represents wavelength of feature (Unit: nm) while Y-axis represents reflection value (Unit: Reflection Unit). The color of lines represents each reflectance value of grass samples.</p> "> Figure A2
<p>Spectrum corrected by standard normal variate (SNV). X-axis represents wavelength of feature (Unit: nm) while Y-axis represents standardized reflection value. The color of lines represents each reflectance value of grass samples.</p> "> Figure A3
<p>Spectrum corrected by centering. X-axis represents wavelength of feature (Unit: nm) while Y-axis represents standardized and centered reflection value. The color of lines represents each reflectance value of grass samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data Collection
2.3. Data Analysis
2.3.1. Data Pre-Process
2.3.2. Random Forest Regressor
2.3.3. X-Loading Analysis
2.3.4. SHAP Analysis
2.4. Computational Environment
- RandomForestRegressor (including feature selection),
- sklearn.ensemble (0.24.2)—“https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html (accessed on 9th January 2023)”,
- PCA (including X-loadings),
- sklearn.decomposition (0.24.2)—“https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed on 9th January 2023)”,
- SHAP,
- shap (0.40.0)—“https://pypi.org/project/shap/ (accessed on 9th January 2023)”.
3. Results & Discussion
3.1. Estimation of DMY and NC
3.2. Wavelength Analysis
3.2.1. PCA Based Approach
3.2.2. AI Model-Based Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Outlier Removal
Appendix A.2. Correction of Variation
Appendix A.3. Centering
Appendix B
Wavelength (nm) | Electron Transition/Bond Vibration/Red Edge | Biochemical Component | Experiment in This Research | References |
---|---|---|---|---|
430 | Electron transition | Chlorophyll a | - | [32] |
460 | Electron transition | Chlorophyll b | - | [32] |
523 | Electron transition | - | 3.2.1. PC1/2 | - |
530 | Electron transition | - | 3.2.1 X-loadings | - |
532 | Electron transition | - | 3.2.1 PC1/2 | - |
535 | Electron transition | Crude protein | - | [13] |
539 | Electron transition | - | 3.2.1 PC1/2 | - |
542 | Electron transition | - | 3.2.1 PC1/2 | - |
545 | Electron transition | Crude protein | - | [13] |
609 | Electron transition | Chlorophyll | - | - |
612 | Electron transition | - | 3.2.2. NC estimation | - |
680 | Red edge | Chlorophyll Neutral detergent fiber | - | [32,33] |
698 | Red edge | - | 3.2.1 PC1/2 | - |
699 | Red edge | - | 3.2.1 PC1/2 | - |
705 | Red edge | Neutral detergent fiber | - | [32] |
707 | Red edge | Nitrogen | - | [12] |
710 | Red edge | - | 3.2.2 NC estimation | |
711 | Red edge | - | 3.2.2 NC estimation | |
721 | Red edge | Nitrogen | - | [12] |
734 | Red edge | - | 3.2.1 PC1/2 | - |
736 | Red edge | - | 3.2.1 PC1/2 | - |
895 | - | - | 3.2.2 NC estimation | |
910 | C-H stretch, 3rd overtone | Protein | - | [32] |
912 | C-H stretch, 3rd overtone | - | 3.2.2 DMY estimation | |
930 | C-H stretch, 3rd overtone | Lipid | - | [32] |
940 | C-H stretch, 3rd overtone | - | 3.2.2 NC estimation X-loadings (PC1) | |
960 | O-H bend, 1st overtone | - | 3.2.2 DMY estimation | |
970 | O-H bend, 1st overtone | Water, starch | - | [32] |
990 | O-H stretch, 2nd overtone | Starch | - | [32] |
991 | O-H stretch, 2nd overtone | - | 3.2.2 DMY estimation | - |
References
- Eurostat. Share of Main Land Types in Utilised Agricultural Area (UAA) by NUTS 2 Regions; Eurostat: Luxembourg, 2020. [Google Scholar]
- Schils, R.L.M.; Van den Berg, W.; Van der Schoot, J.R.; Groten, J.A.M.; Rijk, B.; Van de Ven, G.W.J.; Van Middelkoop, J.C.; Holshof, G.; Van Ittersum, M.K. Disentangling genetic and non-genetic components of yield trends of Dutch forage crops in the Netherlands. Field Crops Res. 2020, 249, 107755. [Google Scholar] [CrossRef]
- Schils, R.L.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Smit, H.; Metzger, M.; Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 2008, 98, 208–219. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Oenema, J.; van Ittersum, M.; van Keulen, H. Improving nitrogen management on grassland on commercial pilot dairy farms in the Netherlands. Agric. Ecosyst. Environ. 2012, 162, 116–126. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Yu, K.Q.; Li, X.; He, Y. Detection of Fungus Infection on Petals of Rapeseed (Brassica napus L.) Using NIR Hyperspectral Imaging. Sci. Rep. 2016, 6, 38878. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm. Eng. Remote Sens. 2002, 68, 607–621. [Google Scholar]
- Yi, Q.-X.; Huang, J.-F.; Wang, F.-M.; Wang, X.-Z.; Liu, Z.-Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environ. Sci. Technol. 2007, 41, 6770–6775. [Google Scholar] [CrossRef] [PubMed]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Kawamura, K.; Watanabe, N.; Sakanoue, S.; Lee, H.-J.; Inoue, Y. Waveband selection using a phased regression with a bootstrap procedure for estimating legume content in a mixed sown pasture. Jpn. Soc. Grassl. Sci. Grassl. Sci. 2011, 57, 81–93. [Google Scholar] [CrossRef]
- Alckmin, G.; Lucieer, A.; Roerink, G.; Rawnsley, R.; Hoving, I.; Kooistra, L. Retrieval of Crude Protein in Perennial Ryegrass Using Spectral Data at the Canopy Level. Remote Sens. 2020, 12, 2958. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kawamura, K.; Watanabe, N.; Sakanoue, S.; Inoue, Y.; Odagawa, S.; Lee, H.-J. Testing genetic algorithm as a tool to select relevant wavebands from field hyperspectral data for estimating pasture mass and quality in a mixed sown pasture using partial least squares regression. Grassl. Sci. 2010, 56, 205–216. [Google Scholar] [CrossRef]
- Lobos, I.; Moscoso, C.J.; Pavez, P. Calibration models for the nutritional quality of fresh pastures by nearinfrared reflectance spectroscopy. Cienc. Investig. Agrar. 2019, 46, 234–242. [Google Scholar] [CrossRef]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near Infrared Spectroscopy technology for prediction of chemical composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Alomar, D.; Fuchslocher, R.; Cuevas, J.; Mardones, R.; Cuevas, E. Prediction of the composition of fresh pastures by near infrared reflectance or interactance-reflectance spectroscopy. Chil. J. Agric. Res. 2009, 69, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Park, R.S.; Agnew, R.E.; Gordon, F.J.; Steen, R.W.J. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Anim. Feed. Sci. Technol. 1998, 72, 155–167. [Google Scholar] [CrossRef]
- Sage, A.J. Random Forest Robustness, Variable Importance, and Tree Aggregation. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2018. [Google Scholar]
- Khanal, K.; Bhusal, S.; Karkee, M.; Zhang, Q. Distinguishing One Year and Two Year Old Canes of Red Raspberry Plant using Spectral Reflectance. IFAC-PapersOnLine 2018, 51, 39–44. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Burns, G.A.; Gilliland, T.J.; Grogan, D.; Watson, S.; O’Kiely, P. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. J. Agric. Sci. 2013, 151, 331–346. [Google Scholar] [CrossRef]
- Jafari, A.; Connolly, V.; Frolich, A.; Walsh, E.J. A Note on Estimation of Quality Parameters in Perennial Ryegrass by near Infrared. Ir. J. Agric. Food Res. 2003, 42, 293–299. [Google Scholar]
- Murphy, D.J.; O’Brien, B.; O’Donovan, M.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2022, 9, 243–253. [Google Scholar] [CrossRef]
- Klaus, V.H.; Kleinebecker, T.; Boch, S.; Müller, J.; Socher, S.A.; Prati, D.; Fischer, M.; Hölzel, N. NIRS meets Ellenberg’s indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecol. Indic. 2012, 14, 82–86. [Google Scholar] [CrossRef]
- Bonnal, L.; Julien, L.; Delalande, M.; Bastianelli, D. How can a dry forage database be used to predict fresh grass composition by NIR spectroscopy? Data transfer vs spectra transfer. In Proceedings of the International Conference on Near Infrared Spectroscopy (NIR 2013), La Grande-Motte, France, 2–7 June 2013; Maurel, V.B., Williams, P., Downey, G., Kaboré, R., Eds.; IRSTEA—France Institut National de Recherche en Sciences et Technologies pour L’environnement et L’agriculture: Montpellier, France, 2013; Volume 16, pp. 685–693. [Google Scholar]
- McClure, W.F.; Crowell, B.; Stanfield, D.L.; Mohapatra, S.; Morimoto, S.; Batten, G. Near infrared technology for precision environmental measurements: Part 1. Determination of nitrogen in green- and dry-grass tissue. J. Infrared Spectrosc. 2002, 10, 177–185. [Google Scholar] [CrossRef]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation Forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Post, C.J.; Degloria, S.D.; Cherney, J.H.; Mikhailova, E.A. Spectral Measurements of Alfalfa/Grass Fields Related to Forage Properties and Species Composition. J. Plant Nutr. 2007, 30, 1779–1789. [Google Scholar] [CrossRef]
Measured Parameter | Technological Device or Method for Data Acquisition | During Harvest | Lab Analysis |
---|---|---|---|
Plant height (cm) | Pasture Reader | x | |
Fresh Grass Weight (t/ha) | Weight scale | x | |
Hyper Spectrum reflectance | Tec5 HandySpec Field equipment | x | |
DMY (t/ha) | Absolutely dry method | x | |
NC (g N/kg DM) | Digestion H2SO4-H2O2-Se; SFA-Nt/Pt | x |
DMY | DMY (with Height) | NC | NC (with Height) | |
---|---|---|---|---|
r2 | 0.94 | 0.97 | 0.88 | 0.90 |
RMSE | 0.35 | 0.17 | 2.59 | 2.35 |
MAE | 0.23 | 0.25 | 1.88 | 1.68 |
Study | Country | Analyte | Parameters | Sample | r2 | RMSE | ||
---|---|---|---|---|---|---|---|---|
DMY | CP, NC | DMY | CP, NC | |||||
[13] | Austria, Netherlands | Fresh grass | CP | 231 | - | 0.81 | - | 85.5 kg CP/ha |
[15] | Japan | Fresh grass | CP | 100 | - | 0.85 | - | 6.46 g/DM kg |
[25] | Ireland | Fresh grass | DMY, CP | 49 | 0.86 | 0.84 | 9.46 g/kg | 20.38 g/DM kg |
[26] | Germany | Dried, milled grass | Moisture, CP | 1812 | 0.91 | 0.84 | 0.45 | 0.47 |
[16] | Chile | Fresh grass | DMY, CP | 915 | 0.93 | 0.84 | 11.3 g/kg | 22.2 g/DM kg |
[17] | Italy | Fresh grass | DMY, CP | 100 | 0.87 | 0.88 | 2.75 g/kg | 2.14 g/DM kg |
[27] | France | Fresh grass | CP | 103 | - | 0.93 | - | 1.55 g/DM kg |
[18] | Chile | Fresh grass | DMY, CP | 107 | 0.99 | 0.91 | 6.55 g/kg | 18.4 g/DM kg |
[28] | USA | Fresh grass | NC | 31 | - | 0.88 | - | 6 g/DM kg |
[19] | Ireland | Fresh grass silage | DM, NC | 136 | 0.85 | 0.78 | - | 4.8 g/DM kg |
[23] | Ireland | Dried, milled grass | CP | 2076 | - | 0.98 | - | - |
[24] | Ireland | Dried, milled grass | CP | 153 | - | 0.96 | - | - |
Wavelength [nm] | Loading |
---|---|
736 | 0.485 |
539 | 0.396 |
734 | 0.384 |
542 | 0.371 |
699 | 0.262 |
532 | 0.217 |
523 | 0.214 |
698 | 0.213 |
531 | 0.197 |
534 | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikawa, H.; Oenema, J.; Sijbrandij, F.; Jindo, K.; Noij, G.-J.; Hollewand, F.; Meurs, B.; Hoving, I.; van der Vlugt, P.; Bouten, M.; et al. Dry Matter Yield and Nitrogen Content Estimation in Grassland Using Hyperspectral Sensor. Remote Sens. 2023, 15, 419. https://doi.org/10.3390/rs15020419
Nishikawa H, Oenema J, Sijbrandij F, Jindo K, Noij G-J, Hollewand F, Meurs B, Hoving I, van der Vlugt P, Bouten M, et al. Dry Matter Yield and Nitrogen Content Estimation in Grassland Using Hyperspectral Sensor. Remote Sensing. 2023; 15(2):419. https://doi.org/10.3390/rs15020419
Chicago/Turabian StyleNishikawa, Hitoshi, Jouke Oenema, Fedde Sijbrandij, Keiji Jindo, Gert-Jan Noij, Frank Hollewand, Bert Meurs, Idse Hoving, Peter van der Vlugt, Max Bouten, and et al. 2023. "Dry Matter Yield and Nitrogen Content Estimation in Grassland Using Hyperspectral Sensor" Remote Sensing 15, no. 2: 419. https://doi.org/10.3390/rs15020419