A New Method for Identifying the Central Business Districts with Nighttime Light Radiance and Angular Effects
<p>Location and NPP-VIIRS nighttime light images of all study cities. (<b>a</b>) The seven selected cities in China; (<b>b</b>) The seven selected cities in the United States.</p> "> Figure 2
<p>The CBD boundaries (red polygon) and Google Earth 3D images of the seven selected cities in the United States.</p> "> Figure 3
<p>Workflow of NTL method for CBD delimitation. (<b>a</b>) Angular effect quantification and classification; (<b>b</b>) Using localized contour tree algorithm to acquire urban potential active areas; (<b>c</b>) Designing the rules for identifying CBD and evaluation.</p> "> Figure 4
<p>Quantification approach and classification rules.</p> "> Figure 5
<p>Illustration of localized contour tree algorithm. (<b>a</b>) Contour map of NTL intensity; (<b>b</b>) Regular contour tree; (<b>c</b>) Simplified level of contour tree.</p> "> Figure 6
<p>Distribution of PAAs and angular effects, where (<b>b</b>) and (<b>d</b>) are enlarged images of the black dashed boxes in (<b>a</b>) and (<b>c</b>), respectively. (<b>a</b>) Radiance distribution of Chinese cities and PAAs; (<b>b</b>) Distribution of angular effect near CBD of Chinese cities; (<b>c</b>) Radiance distribution of the U.S. cities and PAAs; (<b>d</b>) Distribution of angular effect near CBD of the U.S. cities.</p> "> Figure 7
<p>The boxplots of nine indexes are based on PAAs of CBD and Non-CBD. (<b>a</b>,<b>b</b>) The boxplots of China and the USA.</p> "> Figure 8
<p>The reference and computed CBD boundaries and Google Earth image of the study cities.</p> "> Figure 9
<p>The comparison of CBDs from the proposed new method (NTL CBD) and GIS-based methods. (<b>a</b>) Guangzhou; (<b>b</b>) Shenzhen; (<b>c</b>) Nanjing.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. NTL Products
2.2.2. Auxiliary Datasets
2.3. Methods
2.3.1. Angular Effects
2.3.2. Potential Active Areas
2.3.3. Rules for Identifying CBD
2.3.4. Validation and Evaluation
3. Results
3.1. PAA and Angular Effects
3.2. Rules for Identifying CBD in the U.S. and China
3.3. Results of CBDs Identification and Evaluation
4. Discussion
4.1. Advantages of the New Method
4.2. Limitations
4.3. Recommendations for Future Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rice, G.A. Central Business District. In International Encyclopedia of Human Geography; Kitchin, R., Thrift, N., Eds.; Elsevier: Oxford, UK, 2009; pp. 18–25. ISBN 978-0-08-044910-4. [Google Scholar]
- Peng, F.; Qiao, Y.; Zhao, J.; Liu, K.; Li, J. Planning and Implementation of Underground Space in Chinese Central Business District (CBD): A Case of Shanghai Hongqiao CBD. Tunn. Undergr. Space Technol. 2020, 95, 103176. [Google Scholar] [CrossRef]
- Sun, Y. Development and Characteristics of Central Business District Under the Philosophy of Health. Procedia Eng. 2011, 21, 258–266. [Google Scholar] [CrossRef]
- Edgington, D.W. Organisational and Technological Change and the Future Role of the Central Business District: An Australian Example. Urban Stud. 1982, 19, 281–292. [Google Scholar] [CrossRef]
- Säynäjoki, E.-S.; Inkeri, V.; Heinonen, J.; Junnila, S. How Central Business District Developments Facilitate Environmental Sustainability—A Multiple Case Study in Finland. Cities 2014, 41, 101–113. [Google Scholar] [CrossRef]
- Dave, S.M.; Joshi, G.J.; Ravinder, K.; Gore, N. Data Monitoring for the Assessment of On-Street Parking Demand in CBD Areas of Developing Countries. Transp. Res. Part Policy Pract. 2019, 126, 152–171. [Google Scholar] [CrossRef]
- Pan, H.; Deal, B.; Chen, Y.; Hewings, G. A Reassessment of Urban Structure and Land-Use Patterns: Distance to CBD or Network-Based?—Evidence from Chicago. Reg. Sci. Urban Econ. 2018, 70, 215–228. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.D.; Wu, Y.; Tian, G. Analyzing Housing Prices in Shanghai with Open Data: Amenity, Accessibility and Urban Structure. Cities 2019, 91, 165–179. [Google Scholar] [CrossRef]
- Wen, H.; Tao, Y. Polycentric Urban Structure and Housing Price in the Transitional China: Evidence from Hangzhou. Habitat Int. 2015, 46, 138–146. [Google Scholar] [CrossRef]
- Ding, C.; Cao, X.; Wang, Y. Synergistic Effects of the Built Environment and Commuting Programs on Commute Mode Choice. Transp. Res. Part Policy Pract. 2018, 118, 104–118. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S.K. Urban Growth Dynamics of an Indian Metropolitan Using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Space Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Hollenstein, L. Capturing Vernacular Geography from Georeferenced Tags. Ph.D. Thesis, Geographisches Institut der Universität Zürich, Zürich, Switzerland, 2008. [Google Scholar]
- Montello, D.R.; Goodchild, M.F.; Gottsegen, J.; Fohl, P. Where’s Downtown?: Behavioral Methods for Determining Referents of Vague Spatial Queries. Spat. Cogn. Comput. 2003, 3, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.E.; Vance, J.E., Jr. Delimiting the CBD. Econ. Geogr. 1954, 30, 189–222. [Google Scholar] [CrossRef]
- Bohnert, J.E.; Mattingly, P.F. Delimitation of the CBD through Time. Econ. Geogr. 1964, 40, 337–347. [Google Scholar] [CrossRef]
- Carol, H. The Hierarchy of Central Functions within the City. Ann. Assoc. Am. Geogr. 1960, 50, 419–438. [Google Scholar] [CrossRef]
- Bowden, M.J. Downtown through Time: Delimitation, Expansion, and Internal Growth. Econ. Geogr. 1971, 47, 121–135. [Google Scholar] [CrossRef]
- Abbott, C. Five Downtown Strategies: Policy Discourse and Downtown Planning since 1945. J. Policy Hist. 1993, 5, 5–27. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.C. Changes in the Morphology of Three American Central Business Districts 1952–1966. Prof. Geogr. 1969, 21, 406–410. [Google Scholar] [CrossRef]
- Murphy, R.E.; Vance Jr, J.E. A Comparative Study of Nine Central Business Districts. Econ. Geogr. 1954, 30, 301–336. [Google Scholar] [CrossRef]
- Borruso, G.; Porceddu, A. A Tale of Two Cities: Density Analysis of CBD on Two Midsize Urban Areas in Northeastern Italy. In Geocomputation and Urban Planning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 37–56. [Google Scholar]
- Wu, K.; Ye, Y.; Zhang, H.; Yang, W.; Wu, Q. Identify of the Multiple Types of Commercial Center in Guangzhou and Its Spatial Pattern. Prog. Geogr. 2016, 35, 963–974. [Google Scholar]
- Yu, W.; Ai, T.; Shao, S. The Analysis and Delimitation of Central Business District Using Network Kernel Density Estimation. J. Transp. Geogr. 2015, 45, 32–47. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Sun, Y.; Zhao, J. Delimitating Urban Commercial Central Districts by Combining Kernel Density Estimation and Road Intersections: A Case Study in Nanjing City, China. ISPRS Int. J. Geo-Inf. 2019, 8, 93. [Google Scholar] [CrossRef]
- Kang, X.; Lu, X.; Pan, J.; Zhu, Y.; Bai, H. A Method for Identifying the Urban Nuclei Based on POI Big Data. Remote Sens. Technol. Appl. 2021, 36, 237–246. [Google Scholar]
- Taubenböck, H.; Klotz, M.; Wurm, M.; Schmieder, J.; Wagner, B.; Wooster, M.; Esch, T.; Dech, S. Delineation of Central Business Districts in Mega City Regions Using Remotely Sensed Data. Remote Sens. Environ. 2013, 136, 386–401. [Google Scholar] [CrossRef]
- Psyllidis, A.; Gao, S.; Hu, Y.; Kim, E.-K.; McKenzie, G.; Purves, R.; Yuan, M.; Andris, C. Points of Interest (POI): A Commentary on the State of the Art, Challenges, and Prospects for the Future. Comput. Urban Sci. 2022, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Rawat, K.S.; Mishra, A.K.; Sehgal, V.K.; Ahmed, N.; Tripathi, V.K. Comparative Evaluation of Horizontal Accuracy of Elevations of Selected Ground Control Points from ASTER and SRTM DEM with Respect to CARTOSAT-1 DEM: A Case Study of Shahjahanpur District, Uttar Pradesh, India. Geocarto Int. 2013, 28, 439–452. [Google Scholar] [CrossRef]
- Eckert-Gallup, A.; Martin, N. Kernel Density Estimation (KDE) with Adaptive Bandwidth Selection for Environmental Contours of Extreme Sea States. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Sheikhpour, R.; Sarram, M.A.; Sheikhpour, R. Particle Swarm Optimization for Bandwidth Determination and Feature Selection of Kernel Density Estimation Based Classifiers in Diagnosis of Breast Cancer. Appl. Soft Comput. 2016, 40, 113–131. [Google Scholar] [CrossRef]
- Cui, X.; Wang, J.; Wu, F.; Li, J.; Gong, X.; Zhao, Y.; Zhu, R. Extracting Main Center Pattern from Road Networks Using Density-Based Clustering with Fuzzy Neighborhood. ISPRS Int. J. Geo-Inf. 2019, 8, 238. [Google Scholar] [CrossRef] [Green Version]
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble Nighttime Lights Product Suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Z.; Wang, J.; Han, F. Mapping Population on Tibetan Plateau by Fusing VIIRS Data and Nighttime Tencent Location-Based Services Data. Ecol. Indic. 2022, 139, 108893. [Google Scholar] [CrossRef]
- Liang, H.; Guo, Z.; Wu, J.; Chen, Z. GDP Spatialization in Ningbo City Based on NPP/VIIRS Night-Time Light and Auxiliary Data Using Random Forest Regression. Adv. Space Res. 2020, 65, 481–493. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying Spatiotemporal Patterns of Shrinking Cities in Urbanizing China: A Novel Approach Based on Time-Series Nighttime Light Data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Small, C.; Elvidge, C.D.; Baugh, K. Mapping Urban Structure and Spatial Connectivity with VIIRS and OLS Night Light Imagery. In Proceedings of the Joint Urban Remote Sensing Event 2013, Sao Paulo, Brazil, 21–23 April 2013; pp. 230–233. [Google Scholar]
- Zheng, Y.; Tang, L.; Wang, H. An Improved Approach for Monitoring Urban Built-up Areas by Combining NPP-VIIRS Nighttime Light, NDVI, NDWI, and NDBI. J. Clean. Prod. 2021, 328, 129488. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Song, W.; Liu, H.; Wu, Q.; Shi, K.; Wu, J. A New Approach for Detecting Urban Centers and Their Spatial Structure With Nighttime Light Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6305–6319. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Responses of Suomi-NPP VIIRS-Derived Nighttime Lights to Socioeconomic Activity in China’s Cities. Remote Sens. Lett. 2014, 5, 165–174. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Ruhtz, T.; Lindemann, C.; Fischer, J.; Hölker, F. Two Camera System for Measurement of Urban Uplight Angular Distribution. AIP Conf. Proc. 2013, 1531, 568–571. [Google Scholar] [CrossRef]
- Coesfeld, J.; Anderson, S.J.; Baugh, K.; Elvidge, C.D.; Schernthanner, H.; Kyba, C.C.M. Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images. Remote Sens. 2018, 10, 1964. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.; De Miguel, A.S.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2015, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.P.; Kyba, C.C.M.; Heygster, G.; Kuechly, H.U.; Notholt, J.; Kolláth, Z. Angular Distribution of Upwelling Artificial Light in Europe as Observed by Suomi–NPP Satellite. J. Quant. Spectrosc. Radiat. Transf. 2020, 249, 107009. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Zhang, Q.; Li, D.; Chen, F.; Jia, M.; Wang, Y. Using Radiant Intensity to Characterize the Anisotropy of Satellite-Derived City Light at Night. Remote Sens. Environ. 2022, 271, 112920. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote Sensing of Night Lights: A Review and an Outlook for the Future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic Characteristic of Artificial Light at Night—Systematic Investigation with VIIRS DNB Multi-Temporal Observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
- Wang, Z.; Román, M.O.; Kalb, V.L.; Miller, S.D.; Zhang, J.; Shrestha, R.M. Quantifying Uncertainties in Nighttime Light Retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band Data. Remote Sens. Environ. 2021, 263, 112557. [Google Scholar] [CrossRef]
- Tan, X.; Zhu, X.; Chen, J.; Chen, R. Modeling the Direction and Magnitude of Angular Effects in Nighttime Light Remote Sensing. Remote Sens. Environ. 2022, 269, 112834. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Malekzadeh, N. Driving Factors of Formation, Development, and Change of Spatial Structure in Metropolitan Areas: A Systematic Review. J. Urban Manag. 2020, 9, 286–297. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A Comparative Analysis of Megacity Expansions in China and the U.S.: Patterns, Rates and Driving Forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- Zacharias, J.; Yang, W. A Short History of the Chinese Central Business District. Plan. Perspect. 2016, 31, 611–633. [Google Scholar] [CrossRef]
- Barr, J.; Tassier, T. The Dynamics of Subcenter Formation: Midtown Manhattan, 1861–1906. J. Reg. Sci. 2016, 56, 754–791. [Google Scholar] [CrossRef]
- Heikkila, E.; Gordon, P.; Kim, J.I.; Peiser, R.B.; Richardson, H.W.; Dale-Johnson, D. What Happened to the CBD-Distance Gradient?: Land Values in a Policentric City. Environ. Plan. A 1989, 21, 221–232. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Guo, G.; Zheng, Z.; Wu, Z. Using Nighttime Light Data to Identify the Structure of Polycentric Cities and Evaluate Urban Centers. Sci. Total Environ. 2021, 780, 146586. [Google Scholar] [CrossRef]
- Wurm, M.; Goebel, J.; Wagner, G.G.; Weigand, M.; Dech, S.; Taubenböck, H. Inferring Floor Area Ratio Thresholds for the Delineation of City Centers Based on Cognitive Perception. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fan, H.; Li, M.; Zipf, A. Identifying the City Center Using Human Travel Flows Generated from Location-Based Social Networking Data. Environ. Plan. B Plan. Des. 2016, 43, 480–498. [Google Scholar] [CrossRef]
Dataset | Layer | Description | Unit | Purpose |
---|---|---|---|---|
VNP46A1 | Sensor_Zenith | Sensor zenith angle | Degrees | Fitting angular effects |
VNP46A2 | DNB_BRDF-Corrected_NTL | BRDF corrected DNB NTL | nW·cm−2·sr−1 | Fitting angular effects |
VNP46A2 | Mandatory_Quality_Flag | Mandatory quality flag | Unitless | Cloud contamination reduction |
VNP46A2 | QF_Cloud_Mask | Quality flag for cloud mask | Unitless | Cloud contamination reduction |
VNP46A4 | AllAngle_Composite_Snow_Free | Yearly radiance composite during snow-free period | nW·cm−2·sr−1 | Acquiring Potential Active Areas |
City | Government Documents or Official Websites |
---|---|
Beijing | General Office of Beijing Municipal People’s Government on Accelerating the Construction of Beijing’s Business Center District Interim Measures |
Shanghai | Shanghai Pudong District Portal (https://www.pudong.gov.cn/023002007/20211215/247265.html/ (accessed on 12 October 2022)) |
Guangzhou | Outline of the 14th Five-Year Plan and 2035 Vision for National Economic and Social Development of Tianhe District, Guangzhou |
Shenzhen | Comprehensive Plan of Shenzhen City (2010–2020) |
Nanjing | Nanjing Jianye High-Tech Zone Control Detailed Planning and Urban Design Integration Plan |
Hangzhou | Hangzhou (Wulin) Central Business District “12th Five-Year Plan” Special Development Plan |
Chongqing | Chongqing Central Business District Upgrading Action Plan (2021–2025) (Draft for Comments) |
Experiment ID | NTL Threshold (nW·cm−2·sr−1) | Contour Interval (nW·cm−2·sr−1) | Minimum Area (Km2) |
---|---|---|---|
1 | 30, 32, 34, 36 | 1 | 5 |
2 | 34 | 0.5, 1, 1.5, 2 | 5 |
3 | 34 | 1 | 0, 1, 2, 3, 4, 5, 6, 7 |
Index | Definition |
---|---|
Count_A | Number of negative angular pixels in the potential active area |
Min_A | Minimum brightness value of negative angular pixels in the potentially active area |
Max_A | Maximum brightness value of negative angular pixels in the potentially active area |
Mean_A | Average brightness value of negative angular pixels in the potentially active area |
SD_A | Standard deviation brightness value of negative angular pixels in the potentially active area |
Mean | Average brightness values within the potential active area |
Min | Minimum brightness values within the potential active area |
Max | Maximum brightness values within the potential active area |
SD | Standard deviation brightness values within the potential active area |
Classification | ||||||
---|---|---|---|---|---|---|
Observation | China | USA | ||||
CBD | Non-CBD | PA (%) | CBD | Non-CBD | PA (%) | |
CBD | 7 | 0 | 100 | 8 | 0 | 100 |
Non-CBD | 3 | 195 | 99.5 | 0 | 187 | 100 |
UA (%) | 70 | 100 | 100 | 100 |
Country | City | Computed Area (Km2) | Reference CBD Area (Km2) | Precision | Recall | F1-Score | Jaccard Index |
---|---|---|---|---|---|---|---|
China | Beijing | 2.18 | 3.83 | 0.76 | 0.43 | 0.55 | 0.38 |
Chongqing | 10.79 | 25.27 | 0.93 | 0.40 | 0.56 | 0.39 | |
Guangzhou | 15.66 | 11.36 | 0.57 | 0.79 | 0.66 | 0.49 | |
Hangzhou | 6.88 | 2.55 | 0.34 | 0.93 | 0.50 | 0.34 | |
Nanjing | 10.51 | 4.10 | 0.32 | 0.81 | 0.46 | 0.30 | |
Shanghai | 18.07 | 1.72 | 0.09 | 0.99 | 0.17 | 0.09 | |
Shenzhen | 7.64 | 4.05 | 0.39 | 0.73 | 0.51 | 0.34 | |
USA | Boston | 8.00 | 1.57 | 0.20 | 1.00 | 0.33 | 0.20 |
Chicago | 10.10 | 7.39 | 0.60 | 0.82 | 0.69 | 0.53 | |
Dallas | 21.00 | 1.79 | 0.09 | 1.00 | 0.16 | 0.09 | |
Houston | 16.23 | 3.24 | 0.20 | 1.00 | 0.33 | 0.20 | |
Los Angeles | 31.17 | 2.22 | 0.07 | 1.00 | 0.13 | 0.07 | |
New York Lower Manhattan | 5.10 | 3.46 | 0.57 | 0.83 | 0.67 | 0.51 | |
New York Midtown Manhattan | 10.62 | 6.52 | 0.51 | 0.83 | 0.63 | 0.46 | |
Philadelphia | 9.97 | 3.15 | 0.32 | 1.00 | 0.48 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, N.; Cao, X.; Chen, J.; Chen, X. A New Method for Identifying the Central Business Districts with Nighttime Light Radiance and Angular Effects. Remote Sens. 2023, 15, 239. https://doi.org/10.3390/rs15010239
Jie N, Cao X, Chen J, Chen X. A New Method for Identifying the Central Business Districts with Nighttime Light Radiance and Angular Effects. Remote Sensing. 2023; 15(1):239. https://doi.org/10.3390/rs15010239
Chicago/Turabian StyleJie, Na, Xin Cao, Jin Chen, and Xuehong Chen. 2023. "A New Method for Identifying the Central Business Districts with Nighttime Light Radiance and Angular Effects" Remote Sensing 15, no. 1: 239. https://doi.org/10.3390/rs15010239