A Concise Method for Calibrating the Offset of GPS Precise Satellite Orbit
"> Figure 1
<p>Illustration of orbit calibration for adjacent days. The black, red, blue segments denote the initial orbit, the forecasted orbit, and the calibrated orbit, respectively.</p> "> Figure 2
<p>Comparison between the original product and the calibrated product near the daily boundary. The plotted colors for the original and calibrated products black and red, respectively.</p> "> Figure 3
<p>1D-RMS for DBD of each AC’s orbit product.</p> "> Figure 4
<p>Distribution of IGS stations selected for PPP validation.</p> "> Figure 5
<p>1D-RMS of PPP with different durations of original input (unit: mm).</p> "> Figure 6
<p>Time series near the daily boundary of YAKT (unit: mm). The horizontal coordinate is expressed in seconds in days and the vertical coordinate is 1D-RMS of PPP positioning. (<b>a</b>) 15 min near the day boundary (<b>b</b>) 5 min near the day boundary.</p> "> Figure 7
<p>Time series near the daily boundary of dynamic LEO orbit (unit: mm). The horizontal coordinate is seconds in days and the vertical coordinate is 1D-RMS. (<b>a</b>) 15 min near the day boundary (<b>b</b>) 5 min near the day boundary.</p> "> Figure 8
<p>1D-RMS statistics of the dynamic orbit (unit: mm).</p> "> Figure 9
<p>Time series near the daily boundary of the kinematic LEO orbit (unit: mm). The horizontal coordinate is seconds in days, and the vertical coordinate is 1D-RMS. (<b>a</b>) 15 min near the day boundary (<b>b</b>) 5 min near the day boundary.</p> "> Figure 10
<p>1D-RMS statistics of the kinematic orbit (unit: mm).</p> ">
Abstract
:1. Introduction
2. Processing Procedure
3. Influence of Orbit Discontinuities
3.1. GPS Day Boundary Discontinuities
3.2. Products DBD Performance
4. Orbit Discontinuities Calibration and Validation
- Input I: Original orbit and clock offset products without any change.
- Input II: Equal-weighted calibrated orbit and clock offset after modifying the orbital radial direction.
- Input III: Time-weighted calibrated orbit and clock offset after modifying the orbital radial direction.
4.1. Post-Processing Kinematic PPP
4.2. Dynamic LEO POD
4.3. Kinematic LEO POD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steigenberger, P.; Montenbruck, O. Consistency of MGEX Orbit and Clock Products. Engineering 2020, 6, 898–903. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Prange, L.; Deng, Z.; Zhao, Q.; Perosanz, F.; Romero, I.; Noll, C.; Stürze, A.; Weber, G.; et al. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS)—Achievements, prospects and challenges. Adv. Space Res. 2017, 59, 1671–1697. [Google Scholar] [CrossRef]
- Guo, F.; Li, X.; Zhang, X.; Wang, J. Assessment of precise orbit and clock products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX). GPS Solut. 2017, 21, 279–290. [Google Scholar] [CrossRef]
- Griffiths, J. Combined orbits and clocks from IGS second reprocessing. J. Geod. 2019, 93, 177–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, J.; Ray, J.R. On the precision and accuracy of IGS orbits. J. Geod. 2009, 83, 277–287. [Google Scholar] [CrossRef]
- Prange, L.; Dach, R.; Lutz, S.; Schaer, S.; Jäggi, A. The CODE MGEX orbit and clock solution. In IAG Potsdam 2013 Proceedings, International Association of Geodesy Symposia; Willis, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 1–7. [Google Scholar]
- Ray, J. Precision, Accuracy, and Consistency of GNSS Products. In Encyclopedia of Geodesy; Grafarend, E.W., Ed.; Springer: Cham, Switzerland, 2016; pp. 1–5. [Google Scholar]
- Ray, J.; Griffiths, J. Status of IGS orbit modeling and areas for improvement. Geophys. Res. Abstr. 2011, 13, EGU2011-3774. [Google Scholar]
- Strasser, S.; Mayer-Gürr, T.; Zehentner, N. Processing of GNSS constellations and ground station networks using the raw observation approach. J. Geod. 2019, 93, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ge, M. PANDA software and its preliminary result of positioning and orbit determination. Wuhan Univ. J. Nat. Sci. 2003, 8, 603–609. [Google Scholar]
- Griffiths, J.; Ray, J.R. Sub-daily alias and draconitic errors in the IGS orbits. GPS Solut. 2013, 17, 413–422. [Google Scholar] [CrossRef]
- Pengfei, Z.; Rui, T.; Yuping, G.; Hongbin, C. Day-Boundary Discontinuity in GPS Carrier-Phase Time Transfer Using a Geodetic Data Solution Strategy. J. Surv. Eng. 2018, 145, 04018013. [Google Scholar]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P.; Bloßfeld, M.; Fritsche, M. Reducing the draconitic errors in GNSS geodetic products. J. Geod. 2014, 88, 559–574. [Google Scholar] [CrossRef]
- Xue, B.; Yuan, Y.; Wang, H.; Wang, H. Evaluation of the Integrity Risk for Precise Point Positioning. Remote Sens. 2022, 14, 128. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, G.; Chang, G.; Xu, T.; Yang, L. Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers. Remote Sens. 2021, 13, 3266. [Google Scholar] [CrossRef]
- Jäggi, A.; Hugentobler, U.; Bock, H.; Beutler, G. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv. Space Res. 2007, 39, 1612–1619. [Google Scholar] [CrossRef]
- Kang, Z.; Tapley, B.; Bettadpur, S.; Ries, J.; Nagel, P.; Pastor, R. Precise orbit determination for the GRACE mission using only GPS data. J. Geod. 2006, 80, 322–331. [Google Scholar] [CrossRef]
- König, R.; Reigber, C.; Zhu, S. Dynamic model orbits and earth system parameters from combined GPS and LEO data. Adv. Space Res. 2005, 36, 431–437. [Google Scholar] [CrossRef]
- Kang, Z.; Bettadpur, S.; Nagel, P.; Save, H.; Poole, S.; Pie, N. GRACE-FO precise orbit determination and gravity recovery. J. Geod. 2020, 94, 85. [Google Scholar] [CrossRef]
- Bock, H.; Jäggi, A.; Beutler, G.; Meyer, U. GOCE: Precise orbit determination for the entire mission. J. Geod. 2014, 88, 1047–1060. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hackel, S.; van den Ijssel, J.; Arnold, D. Reduced dynamic and kinematic precise orbit determination for the Swarm mission from 4 years of GPS tracking. GPS Solut. 2018, 22, 79. [Google Scholar] [CrossRef]
- Allahvirdi-Zadeh, A.; Wang, K.; El-Mowafy, A. Precise Orbit Determination of LEO Satellites Based on Undifferenced GNSS Observations. J. Surv. Eng. 2022, 148, 03121001. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zou, X.; Jiang, W. Precise orbit determination for GRACE with zero-difference kinematic method. Chin. Sci. Bull. 2010, 55, 600–606. [Google Scholar] [CrossRef]
- Luo, P.; Jin, S.; Shi, Q. Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations. Sensors 2022, 22, 1071. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Wu, G.; Feng, X.; Li, D.; Yu, Z.; Wang, X.; Gao, Y.; Guo, J.; Wen, X.; Jian, W. Application of Multi-System Combination Precise Point Positioning in Landslide Monitoring. Appl. Sci. 2021, 11, 8378. [Google Scholar] [CrossRef]
- Cina, A.; Manzino, A.M.; Bendea, I.H. Improving GNSS Landslide Monitoring with the Use of Low-Cost MEMS Accelerometers. Appl. Sci. 2019, 9, 5075. [Google Scholar] [CrossRef] [Green Version]
- Paziewski, J.; Sieradzki, R.; Baryla, R. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Meas. Sci. Technol. 2018, 29, 35002. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An Optimized Short-Arc Approach: Methodology and Application to Develop Refined Time Series of Tongji-Grace2018 GRACE Monthly Solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Jäggi, A.; Prange, L.; Hugentobler, U. Impact of covariance information of kinematic positions on orbit reconstruction and gravity field recovery. Adv. Space Res. 2011, 47, 1472–1479. [Google Scholar] [CrossRef]
- Lutz, S.; Meindl, M.; Steigenberger, P.; Beutler, G.; Sośnica, K.; Schaer, S.; Dach, R.; Arnold, D.; Thaller, D.; Jäggi, A. Impact of the arc length on GNSS analysis results. J. Geod. 2016, 90, 365–378. [Google Scholar] [CrossRef]
- Sośnica, K.; Thaller, D.; Dach, R.; Steigenberger, P.; Beutler, G.; Arnold, D.; Jäggi, A. Satellite laser ranging to GPS and GLONASS. J. Geod. 2015, 89, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Prange, L.; Orliac, E.; Dach, R.; Arnold, D.; Beutler, G.; Schaer, S.; Jäggi, A. CODE’s five-system orbit and clock solution—The challenges of multi-GNSS data analysis. J. Geod. 2017, 91, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yuan, Y.; Huang, J.; Zhu, Y.; Wu, J.; Xiong, Y.; Li, X.; Zhang, K. Galileo and QZSS precise orbit and clock determination using new satellite metadata. J. Geod. 2019, 93, 1123–1136. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, Y.; Shi, C.; Wang, B.; Yao, X.; Zheng, F. Precise orbit determination of BeiDou constellation: Method comparison. GPS Solut. 2016, 20, 259–268. [Google Scholar] [CrossRef]
- Tan, B.; Yuan, Y.; Wen, M.; Ning, Y.; Liu, X. Initial Results of the Precise Orbit Determination for the New-Generation BeiDou Satellites (BeiDou-3) Based on the iGMAS Network. ISPRS Int. J. Geo-Inf. 2016, 5, 196. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, S.G.; Gao, C.; Gao, W.; Xia, Y. BDS/GPS/LEO triple-frequency uncombined precise point positioning and its performance in harsh environments. Measurement 2019, 152, 107216. [Google Scholar] [CrossRef]
- Guo, J.; Xu, X.; Zhao, Q.; Liu, J. Precise orbit determination for quad-constellation satellites at Wuhan University: Strategy, result validation, and comparison. J. Geod. 2016, 90, 143–159. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Meng, X.; Zhang, Q.; Zhang, W.; Li, X.; Yuan, Y. LEO–BDS–GPS integrated precise orbit modeling using FengYun-3D, FengYun-3C onboard and ground observations. GPS Solut. 2020, 24, 48. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Ma, F.; Zhang, W.; Zhang, Q.; Qin, Y.; Zhang, H.; Meng, Y.; Bian, L. Integrated Precise Orbit Determination of Multi-GNSS and Large LEO Constellations. Remote Sens. 2019, 11, 2514. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, F.; Li, X.; Lv, H.; Bian, L.; Jiang, Z.; Zhang, X. LEO constellation-augmented multi-GNSS for rapid PPP convergence. J. Geod. 2019, 93, 749–764. [Google Scholar] [CrossRef]
- Li, M.; Xu, T.; Guan, M.; Gao, F.; Jiang, N. LEO-constellation-augmented multi-GNSS real-time PPP for rapid re-convergence in harsh environments. GPS Solut. 2022, 26, 29. [Google Scholar] [CrossRef]
- Song, C.; Chen, H.; Jiang, W.; An, X.; Chen, Q.; Li, W. An effective interpolation strategy for mitigating the day boundary discontinuities of precise GNSS orbit products. GPS Solut. 2021, 25, 99. [Google Scholar] [CrossRef]
- Qing, Y.; Lou, Y.; Dai, X.; Liu, Y. Benefits of satellite clock modeling in BDS and Galileo orbit determination. Def. Aerosp. Week 2018, 60, 2550–2560. [Google Scholar] [CrossRef]
- Steigenberger, P.; Hugentobler, U.; Loyer, S.; Perosanz, F.; Prange, L.; Dach, R.; Uhlemann, M.; Gendt, G.; Montenbruck, O. Galileo orbit and clock quality of the IGS Multi-GNSS Experiment. Adv. Space Res. 2015, 55, 269–281. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, W.; Wang, C.; Yao, X.; Shi, C.; Liu, J. The impact of orbital errors on the estimation of satellite clock errors and PPP. Adv. Space Res. 2014, 54, 1571–1580. [Google Scholar] [CrossRef]
- Beutler, G.; Brockmann, E.; Gurtner, W.; Hugentobler, U.; Mervart, L.; Rothacher, M. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): Theory and initial results. Manuscr. Geodaet. 1994, 19, 367–386. [Google Scholar]
- Huizhong, Z.H.U.; Xiaoting, L.E.I.; Aigong, X.U.; Jun, L.I.; Meng, G.A.O. The integer ambiguity resolution of BDS triple-frequency between long range stations with GEO satellite constraints. Acta Geod. Et Cartogr. Sin. 2020, 49, 1222–1234. [Google Scholar]
- Huizhong, Z.H.U.; Xiaoting, L.E.I.; Jun, L.I.; Meng, G.A.O.; Aigong, X.U. The algorithm of integer ambiguity resolution with BDS triple-frequency between reference stations at single epoch. Acta Geod. Et Cartogr. Sin. 2020, 49, 1388–1398. [Google Scholar]
- Bettadpur, S. GRACE Product Specification Document; CSR-GR-03-02, v4.6; Center for Space Research, University of Texas at Austin: Austin, TX, USA, 2012. [Google Scholar]
- Berger, C.; Biancale, R.M., III; Barlier, F. Improvement of the empirical thermospheric model DTM: DTM94–acomparative review of various temporal variations and prospects in space geodesy applications. J. Geod. 1998, 72, 161–178. [Google Scholar] [CrossRef]
- Case, K.; Kruizinga, G.; Wu, S.C. GRACE Level 1B Data Product User Handbook; JPL D-22027; California Institute of Technology: Pasadena, CA, USA, 2010. [Google Scholar]
AC’s IDs | COD | JPL | IGS | EMR | ESA | GFZ |
---|---|---|---|---|---|---|
FIT_24h | 1.5 | 1.3 | 1.2 | 1.7 | 1.1 | 1.4 |
FIT_23h | 1.5 | 1.3 | 1.2 | 1.7 | 1.1 | 1.4 |
EXP_1h | 2.2 | 0.9 | 1.1 | 1.3 | 1.1 | 1.2 |
Items | Configuration |
---|---|
Observations | Un-differenced ionosphere-free code and phase [47,48] |
Estimator | Least squares method |
Duration | 24 h 7 d |
Sampling rate | 5 min |
Elevation cutoff | 7° |
Satellite orbit | Final precise ephemeris |
Satellite clock offset | Final precise clock product with a 5 min sampling rate |
Ionospheric delay | Ionosphere-free combination |
Tropospheric delay | Saastamoinen model + ZTD estimation |
Receiver clock | Epoch-wise parameter estimation |
Ambiguity | Estimation (floating) |
AC | Item | 5 min | 15 min | 60 min | |||
---|---|---|---|---|---|---|---|
1D-RMS | Diff | 1D-RMS | Diff | 1D-RMS | Diff | ||
COD | Boundary | 61.9 | 3.8 | 62.9 | 4.9 | 63.4 | 5.6 |
Non-boundary | 58.1 | 58.1 | 57.7 | ||||
JPL | Boundary | 74.4 | 8.2 | 75.6 | 9.6 | 70.6 | 4.7 |
Non-boundary | 66.2 | 66.0 | 65.8 | ||||
IGS | Boundary | 70.0 | 11.4 | 69.6 | 11.3 | 65.8 | 7.8 |
Non-boundary | 58.5 | 58.4 | 58.0 | ||||
EMR | Boundary | 92.8 | 21.3 | 93.0 | 21.7 | 83.4 | 12.7 |
Non-boundary | 71.5 | 71.3 | 70.8 | ||||
ESA | Boundary | 86.3 | 25.8 | 81.9 | 21.7 | 73.4 | 13.9 |
Non-boundary | 60.5 | 60.2 | 59.5 | ||||
GFZ | Boundary | 74.6 | 13.4 | 74.5 | 13.5 | 69.6 | 9.1 |
Non-boundary | 61.1 | 61.0 | 60.5 |
Ac ID | Input Ⅰ | Input Ⅱ | Input Ⅲ | Improvement Rate | |
---|---|---|---|---|---|
Input Ⅱ | Input Ⅲ | ||||
COD | 4.9 | 4.4 | 4.3 | 8.2% | 12.3% |
JPL | 9.6 | 7.8 | 7.7 | 18.8% | 19.8% |
IGS | 11.3 | 9.2 | 9.4 | 17.8% | 16.8% |
EMR | 21.7 | 12.7 | 15.1 | 41.5% | 30.4% |
ESA | 21.7 | 15.3 | 19.2 | 29.4% | 11.5% |
GFZ | 13.5 | 9.3 | 11.5 | 31.8% | 14.8% |
Observation Model | Description |
---|---|
Observations | Un-differenced ionosphere-free code and phase |
Adjustment method | Batch least squares method |
Arc length | 25 h |
Sampling rate | 5 min |
Elevation cutoff | 1° |
GPS phase center offset | igs14.atx |
LEO phase center offset | Applied |
Tropospheric delay | NONE |
Ambiguity | Float |
Force Model | |
Earth gravity | EGM 2008, 120 120 |
N-body gravity | JPL DE405 |
Solar radiation | Macro model |
Atmospheric drag | DTM9 |
Relativity | IERS Conventions 2010 |
Tidal variations | IERS Conventions 2010 |
AC | 1D-RMS | Improvement Rate | |||
---|---|---|---|---|---|
Input Ⅰ | Input Ⅱ | Input Ⅲ | Input Ⅱ | Input Ⅲ | |
COD | 23.8 | 23.1 | 23.4 | 2.9% | 1.9% |
JPL | 28.0 | 27.7 | 27.8 | 1.0% | 0.8% |
IGS | 27.0 | 26.4 | 26.6 | 2.1% | 1.6% |
EMR | 34.2 | 31.2 | 33.5 | 8.8% | 2.1% |
ESA | 32.4 | 29.3 | 31.2 | 9.4% | 3.5% |
GFZ | 30.4 | 28.9 | 30.1 | 5.0% | 1.2% |
AC | 1D-RMS | Improvement Rate | |||
---|---|---|---|---|---|
Input Ⅰ | Input Ⅱ | Input Ⅲ | Input Ⅱ | Input Ⅲ | |
COD | 38.3 | 36.6 | 35.7 | 6.9% | 4.4% |
JPL | 45.3 | 40.6 | 38.6 | 14.8% | 10.4% |
IGS | 48.0 | 43.6 | 43.5 | 9.4% | 9.1% |
EMR | 68.8 | 63.1 | 60.6 | 12.0% | 8.3% |
ESA | 65.6 | 58.4 | 52.2 | 20.5% | 11.0% |
GFZ | 56.3 | 52.1 | 51.8 | 7.8% | 7.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Tang, L.; Zhu, H.; Xu, A.; Li, B. A Concise Method for Calibrating the Offset of GPS Precise Satellite Orbit. Remote Sens. 2023, 15, 8. https://doi.org/10.3390/rs15010008
Yang H, Tang L, Zhu H, Xu A, Li B. A Concise Method for Calibrating the Offset of GPS Precise Satellite Orbit. Remote Sensing. 2023; 15(1):8. https://doi.org/10.3390/rs15010008
Chicago/Turabian StyleYang, Hu, Longjiang Tang, Huizhong Zhu, Aigong Xu, and Bo Li. 2023. "A Concise Method for Calibrating the Offset of GPS Precise Satellite Orbit" Remote Sensing 15, no. 1: 8. https://doi.org/10.3390/rs15010008