Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands
<p>(<b>A</b>) Colorized elevation map showing the distribution of extensional structures around the Hellas basin. The red dots indicate the positions of Paterae associated with volcanism. CH: Circum Hellas structures (marked in blue lines); WH: Western Hellas (structures marked in red lines), NWH: North-western Hellas (structures marked in green lines); dashed parallelogram represents the linear orientation of Paterae in the Circum Hellas Volcanic Province (CHVP). A topographic profile transect (AA’) is shown in (<b>B</b>). AA’ shows the extensional structures on the top of the domal (~2 km) region. (PP: Pityusa Patera; MP: Malea Patera; PP’: Peneus Patera; AP: Amphitrites Patera; HP: Hadriaca Patera; TP: Tyrrhena Patera).</p> "> Figure 2
<p>(<b>A</b>) CH extensional structures are shown in THEMIS images in the western flank of the Hellas basin. (<b>B</b>) A topographic profile section is extracted along B–B’ using HRSC−MOLA blended DEM. The derived profile section clearly shows the difference in elevation on each side of the graben.</p> "> Figure 3
<p>(<b>A</b>) WH extensional structures shown on CTX images. High-resolution view of a 35 km wide WH graben in Noachis Terra region. (<b>B</b>) Traces of structures drawn over Figure A. (<b>C</b>) the topographic profile section C–C′ shows that the graben in this set of extensional structures have similar elevations implying both faults on either side of the graben have received equal importance during extension.</p> "> Figure 4
<p>(<b>A</b>) NWH extensional structures are shown in the CTX image with its central location 27°55′ E/28°15′ S. (<b>B</b>) High-resolution view of a 10 km wide NWHG. Detailed structures are drawn over Figure A. (<b>C</b>) graphical representation of the topographic profile section D–D′.</p> "> Figure 5
<p>(<b>A</b>) A magnified region showing collateral synthetic half grabens with half-moon-shaped geometry. Balls indicate downdip direction. (<b>B</b>) Relay ramps associated with the graben. (<b>C</b>) Relay structures associated with a half-graben. Several morphometric terminologies associated with the relay ramps are shown in (<b>D</b>).</p> "> Figure 6
<p>CRISM analysis and minerals detected in the study area. (<b>A</b>) Location map. WH and NWH structures are traced in red and black. Colored dots represent specific minerals from each observation. (<b>B</b>) A sample presentation of the CRISM analysis from FRT0000C423. (<b>a</b>) False color composite with four regions of interest marked by four colored squares which correspond to the colors of the adjacent spectra. The black square represents the location of the neutral spectra used to produce the presented ratioed spectra. (<b>b</b>) RGB composite with summary parameters highlighting olivine (red) and pyroxene (green) [R = OLINDEX3 (0.000–0.173), G = LCPINDEX2 (0.000–0.024), B = HCPINDEX2 (0.000–0.027)]. (<b>c</b>) RGB composite with summary parameters highlighting olivine (red), pyroxene (green), and plagioclase (blue, outlined by white circle) [R = OLINDEX3 (0.000–0.187), G = LCPINDEX2 (0.000–0.025), B = BD1300 (0.000–0.017)]. (<b>d</b>) CRISM-ratioed spectra showing from top to bottom: olivine (green), plagioclase (grey), LCP (light brown), and HCP (dark brown). (<b>C</b>) Sample spectra from CRISM observations FRT0000C423, FRT0000C1C8, FRT00013C86, HRL0000AAA2, and FRT0000C8C7. CRISM-ratioed spectra numbered 1–10 and color-coded to match the dot colors used in <a href="#remotesensing-14-05664-f001" class="html-fig">Figure 1</a>A. (<b>a</b>) Spectra are indicative of igneous minerals olivine (1), anorthite (2,3), LCP (4), and HCP (5,6). (<b>b</b>) Spectra indicative of hydrated minerals hydrated silica (7), vermiculite (8), and monohydrated sulfate (9), as well as water ice (10). (<b>c</b>) Validating USGS library spectra of Fe-olivine (1), anorthite (2,3), LCP augite C1PP48 (4), HCP pyroxene C1S801 (5,6), opal TM8896 (7), vermiculite LAVE01 (8), kieserite F1CC15 (9), water ice (10).</p> "> Figure 7
<p>(<b>A</b>) Areas with pervasive extensional structures selected for GRS analysis. The coordinates of each corner of the hexagonal area are stated parenthetically. (<b>B</b>–<b>E</b>) The concentrations of Ca, K, Si, and Th, with the study region outlined (global maps are provided in <a href="#app1-remotesensing-14-05664" class="html-app">Supplementary Figures S1 and S2</a>). Mass fractions are percentages except for Th in mg/kg. The study region’s geochemistry compared with the rest of the Martian crust, following the modified box plot method. (<b>F</b>) The ratios are shown as 25th/75th percentile (orange), 50th/50th percentile, and 75th/25th (grey) percentile [<a href="#B61-remotesensing-14-05664" class="html-bibr">61</a>]. The error bars were calculated by propagating the median average deviations (MAD), where MAD = median (|Xi–median (Xi)|) [<a href="#B62-remotesensing-14-05664" class="html-bibr">62</a>].</p> "> Figure 8
<p>A schematic model explaining the development of the extensional structures. <b>Stage 1.</b> A giant impact (~4.0 Ga) excavates the upper crust and penetrates up to the upper mantle. <b>Stage 2</b>. Impact-induced frictional heat raises temperatures of the mantle, creating a density deficit relative to the ambient, and it induces a visco-elastic flow, and MASCON develops. <b>Stage 3</b>. Due to conductive cooling and viscoelastic evolution, gravitational collapse happens. The collapse drags the upper lithosphere towards the interior of the basin. Consequently, fractures open in the surrounding basin to accommodate the vacant space. <b>Stage 4</b>. A mantle plume originates around ~3.8 Ga and initiates rifting.</p> ">
Abstract
:1. Introduction
2. Geology of the Study Area
3. Methodology
4. Results
4.1. Morpho-Structural Features
4.2. Mineralogy
4.3. Geochemistry
5. Discussion
6. Possible Scenario
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schubert, G.; Turcotte, D.L.; Olson, P. Mantle Convection in the Earth and Planets; Cambridge University Press: Cambridge, UK, 2001; ISBN 9780521353670. [Google Scholar]
- Moore, W.B.; Simon, J.I.; Webb, A.A.G. Heat-Pipe Planets. Earth Planet. Sci. Lett. 2017, 474, 13–19. [Google Scholar] [CrossRef]
- Parro, L.M.; Jiménez-Díaz, A.; Mansilla, F.; Ruiz, J. Present-Day Heat Flow Model of Mars. Sci. Rep. 2017, 7, 45629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruyama, S. Plume Tectonics. J. Geol. Soc. Jpn. 1994, 100, 24–49. [Google Scholar] [CrossRef]
- Baker, V.R.; Maruyama, S.; Dohm, J.M. Tharsis Superplume and the Geological Evolution of Early Mars. In Superplumes: Beyond Plate Tectonics; Springer: Dordrecht, The Netherlands, 2007; pp. 507–522. [Google Scholar] [CrossRef]
- Moore, W.B.; Webb, A.A.G. Heat-Pipe Earth. Nature 2013, 501, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Acuña, M.H.; Connerney, J.E.P.; Ness, N.F.; Lin, R.P.; Mitchell, D.; Carlson, C.W.; McFadden, J.; Anderson, K.A.; Rème, H.; Mazelle, C.; et al. Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment. Science 1999, 284, 790–793. [Google Scholar] [CrossRef] [Green Version]
- Connerney, J.E.P.P.; Acuna, M.H.; Ness, N.F.; Kletetschka, G.; Mitchell, D.L.; Lin, R.P.; Reme, H. Tectonic Implications of Mars Crustal Magnetism. Proc. Natl. Acad. Sci. USA 2005, 102, 14970–14975. [Google Scholar] [CrossRef] [Green Version]
- Mittelholz, A.; Johnson, C.L.; Feinberg, J.M.; Langlais, B.; Phillips, R.J. Timing of the Martian Dynamo: New Constraints for a Core Field 4.5 and 3.7 Ga Ago. Sci. Adv. 2020, 6, eaba0513. [Google Scholar] [CrossRef]
- Nimmo, F.; Stevenson, D.J. Influence of Early Plate Tectonics on the Thermal Evolution and Magnetic Field of Mars. J. Geophys. Res. Planets 2000, 105, 11969–11979. [Google Scholar] [CrossRef]
- Sleep, N.H. Martian Plate Tectonics. J. Geophys. Res. 1994, 99, 5639. [Google Scholar] [CrossRef]
- Hauber, E.; Kronberg, P. Tempe Fossae, Mars: A Planetary Analogon to a Terrestrial Continental Rift? J. Geophys. Res. E Planets 2001, 106, 20587–20602. [Google Scholar] [CrossRef]
- Yin, A. An Episodic Slab-Rollback Model for the Origin of the Tharsis Rise on Mars: Implications for Initiation of Local Plate Subduction and Final Unification of a Kinematically Linked Global Plate-Tectonic Network on Earth. Lithosphere 2012, 4, 553–593. [Google Scholar] [CrossRef] [Green Version]
- Yin, A. Structural Analysis of the Valles Marineris Fault Zone: Possible Evidence for Large-Scale Strike-Slip Faulting on Mars. Lithosphere 2012, 4, 286–330. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.L.; Robbins, S.J.; Fortezzo, C.M.; Skinner, J.A.; Hare, T.M. The Digital Global Geologic Map of Mars: Chronostratigraphic Ages, Topographic and Crater Morphologic Characteristics, and Updated Resurfacing History. Planet. Space Sci. 2014, 95, 11–24. [Google Scholar] [CrossRef]
- Breuer, D.; Spohn, T. Early Plate Tectonics versus Single-Plate Tectonics on Mars: Evidence from Magnetic Field History and Crust Evolution. J. Geophys. Res. 2003, 108, 5072. [Google Scholar] [CrossRef] [Green Version]
- Buczkowski, D.L.; Seelos, K.D.; Cooke, M.L. Giant Polygons and Circular Graben in Western Utopia Basin, Mars: Exploring Possible Formation Mechanisms. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Rogers, A.D.; Nazarian, A.H. Evidence for Noachian Flood Volcanism in Noachis Terra, Mars, and the Possible Role of Hellas Impact Basin Tectonics. J. Geophys. Res. E Planets 2013, 118, 1094–1113. [Google Scholar] [CrossRef]
- Williams, D.A.; Greeley, R.; Manfredi, L.; Raitala, J.; Neukum, G. The Circum-Hellas Volcanic Province, Mars: Assessment of Wrinkle-Ridged Plains. Earth Planet. Sci. Lett. 2010, 294, 492–505. [Google Scholar] [CrossRef]
- Luzzi, E.; Rossi, A.P.; Carli, C.; Altieri, F. Tectono-Magmatic, Sedimentary, and Hydrothermal History of Arsinoes and Pyrrhae Chaos, Mars. J. Geophys. Res. Planets 2020, 125, e2019JE006341. [Google Scholar] [CrossRef]
- De, K.; Ruj, T.; Kundu, A.; Dasgupta, N.; Kawai, K. Evolution of Pyrrhae Fossae, Mars: An Explication from the Age Estimation Using the Buffered Crater Counting Technique. Curr. Sci. 2021, 121, 906. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C. The Formation of Valles Marineris: 2. Stress Focusing along the Buried Dichotomy Boundary. J. Geophys. Res. Planets 2012, 117. [Google Scholar] [CrossRef]
- Wichman, R.W.; Schultz, P.H. Sequence and Mechanisms of Deformation around the Hellas and Isidis Impact Basins on Mars. J. Geophys. Res. 1989, 94, 17333. [Google Scholar] [CrossRef]
- Williams, D.A.; Greeley, R.; Fergason, R.L.; Kuzmin, R.; McCord, T.B.; Combe, J.-P.; Head, J.W.; Xiao, L.; Manfredi, L.; Poulet, F.; et al. The Circum-Hellas Volcanic Province, Mars: Overview. Planet. Space Sci. 2009, 57, 895–916. [Google Scholar] [CrossRef]
- Ruj, T.; Komatsu, G.; Dohm, J.M.; Miyamoto, H.; Salese, F. Generic Identification and Classification of Morphostructures in the Noachis-Sabaea Region, Southern Highlands of Mars. J. Maps 2017, 13, 755–766. [Google Scholar] [CrossRef]
- Golombek, M.P.; Phillips, R.J. Mars Tectonics. In Planetary Tectonics; Cambridge University Press: Cambridge, UK, 2009; pp. 183–232. [Google Scholar]
- Allemand, P.; Thomas, P. Small-Scale Models of Multiring Basins. J. Geophys. Res. Planets 1999, 104, 16501–16514. [Google Scholar] [CrossRef]
- Ruj, T.; Komatsu, G.; Pasckert, J.H.; Dohm, J.M. Timings of Early Crustal Activity in Southern Highlands of Mars: Periods of Crustal Stretching and Shortening. Geosci. Front. 2019, 10, 1029–1037. [Google Scholar] [CrossRef]
- Malin, M.C.; Bell, J.F.; Cantor, B.A.; Caplinger, M.A.; Calvin, W.M.; Clancy, R.T.; Edgett, K.S.; Edwards, L.; Haberle, R.M.; James, P.B.; et al. Context Camera Investigation on Board the Mars Reconnaissance Orbiter. J. Geophys. Res. 2007, 112, E05S04. [Google Scholar] [CrossRef] [Green Version]
- Neukum, G.; Jaumann, R. HRSC: The High Resolution Stereo Camera of Mars Express. Eur. Sp. Agency Special Publ. ESA SP 2004, 1240, 17–35. [Google Scholar]
- Jaumann, R.; Neukum, G.; Behnke, T.; Duxbury, T.C.; Eichentopf, K.; Flohrer, J.; Gasselt, S.; Giese, B.; Gwinner, K.; Hauber, E.; et al. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planet. Space Sci. 2007, 55, 928–952. [Google Scholar] [CrossRef]
- Murchie, S.L.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 2007, 112, E05S03. [Google Scholar] [CrossRef]
- Boynton, W.V.; Feldman, W.C.; Mitrofanov, I.G.; Evans, L.G.; Reedy, R.C.; Squyres, S.W.; Starr, R.; Trombka, J.I.; d’Uston, C.; Arnold, J.R.; et al. The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite. Space Sci. Rev. 2004, 110, 37–83. [Google Scholar] [CrossRef]
- Rodriguez, J.A.P.; Dobrea, E.N.; Kargel, J.S.; Baker, V.R.; Crown, D.A.; Webster, K.D.; Berman, D.C.; Wilhelm, M.B.; Buckner, D. The Oldest Highlands of Mars May Be Massive Dust Fallout Deposits. Sci. Rep. 2020, 10, 10347. [Google Scholar] [CrossRef] [PubMed]
- Platz, T.; Michael, G.; Tanaka, K.L.; Skinner, J.A.; Fortezzo, C.M. Crater-Based Dating of Geological Units on Mars: Methods and Application for the New Global Geological Map. Icarus 2013, 225, 806–827. [Google Scholar] [CrossRef]
- Head, J.W.; Wilson, L.; Dickson, J.; Neukum, G. The Huygens-Hellas Giant Dike System on Mars: Implications for Late Noachian-Early Hesperian Volcanic Resurfacing and Climatic Evolution. Geology 2006, 34, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Ruj, T.; Komatsu, G.; Pondrelli, M.; Di Pietro, I.; Pozzobon, R. Morphometric Analysis of a Hesperian Aged Martian Lobate Scarp Using High-Resolution Data. J. Struct. Geol. 2018, 113, 1–9. [Google Scholar] [CrossRef]
- Mangold, N.; Allemand, P.; Thomas, P.G.; Vidal, G. Chronology of Compressional Deformation on Mars: Evidence for a Single and Global Origin. Planet. Space Sci. 2000, 48, 1201–1211. [Google Scholar] [CrossRef]
- Ruj, T.; Kawai, K. A Global Investigation of Wrinkle Ridge Formation Events; Implications towards the Thermal Evolution of Mars. Icarus 2021, 369, 114625. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Zuber, M.T.; Hauck, S.A. Strike-Slip Faults on Mars: Observations and Implications for Global Tectonics and Geodynamics. J. Geophys. Res. 2008, 113, E08002. [Google Scholar] [CrossRef] [Green Version]
- Irwin, R.P.; Wray, J.J.; Mest, S.C.; Maxwell, T.A. Wind-Eroded Crater Floors and Intercrater Plains, Terra Sabaea, Mars. J. Geophys. Res. Planets 2018, 123, 445–467. [Google Scholar] [CrossRef]
- Bandfield, J.L.; Amador, E.S.; Thomas, N.H. Extensive Hydrated Silica Materials in Western Hellas Basin, Mars. Icarus 2013, 226, 1489–1498. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.P.; Mangold, N.; Murchie, S. Hydrous Minerals on Mars as Seen by the CRISM and OMEGA Imaging Spectrometers: Updated Global View. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G.G.; Hauber, E. Hydrological and Sedimentary Analyses of Well-Preserved Paleofluvial-Paleolacustrine Systems at Moa Valles, Mars. J. Geophys. Res. Planets 2016, 121, 194–232. [Google Scholar] [CrossRef]
- Rogers, A.D.; Hamilton, V.E. Compositional Provinces of Mars from Statistical Analyses of TES, GRS, OMEGA and CRISM Data. J. Geophys. Res. Planets 2015, 120, 62–91. [Google Scholar] [CrossRef]
- Korteniemi, J.; Kukkonen, S. Volcanic Structures Within Niger and Dao Valles, Mars, and Implications for Outflow Channel Evolution and Hellas Basin Rim Development. Geophys. Res. Lett. 2018, 45, 2934–2944. [Google Scholar] [CrossRef] [Green Version]
- Fergason, R.L.; Hare, T.M.; Laura, J. HRSC and MOLA Blended Digital Elevation Model at 200 M. In Proceedings of the Astrogeology PDS Annex; US Geological Survey: Flagstaff, AZ, USA, 2018. [Google Scholar]
- Bishop, J. Reflectance Spectroscopy of Ferric Sulfate-Bearing Montmorillonites as Mars Soil Analog Materials. Icarus 1995, 117, 101–119. [Google Scholar] [CrossRef]
- Flahaut, J.; Carter, J.; Poulet, F.; Bibring, J.P.; van Westrenen, W.; Davies, G.R.; Murchie, S.L. Embedded Clays and Sulfates in Meridiani Planum, Mars. Icarus 2015, 248, 269–288. [Google Scholar] [CrossRef]
- Schmidt, G.; Luzzi, E.; Rossi, A.P.; Pondrelli, M.; Apuzzo, A.; Salvini, F. Protracted Hydrogeological Activity in Arabia Terra, Mars: Evidence from the Structure and Mineralogy of the Layered Deposits of Becquerel Crater. J. Geophys. Res. Planets 2022, 127, e2022JE007320. [Google Scholar] [CrossRef]
- Viviano-Beck, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wisemann, S.M.; Mustard, J.F.; et al. Revised CRISM Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. J. Geophys. Res. E Planets 2014, 119, 1403–1431. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High Spectral Resolution Reflectance Spectroscopy of Minerals. J. Geophys. Res. 1990, 95, 12653. [Google Scholar] [CrossRef] [Green Version]
- Pelkey, S.M.; Mustard, J.F.; Murchie, S.; Clancy, R.T.; Wolff, M.; Smith, M.; Milliken, R.E.; Bibring, J.P.; Gendrin, A.; Poulet, F.; et al. CRISM Multispectral Summary Products: Parameterizing Mineral Diversity on Mars from Reflectance. J. Geophys. Res. Planets 2007, 112, 8–14. [Google Scholar] [CrossRef]
- Rani, A.; Basu Sarbadhikari, A.; Hood, D.R.; Gasnault, O.; Nambiar, S.; Karunatillake, S. Consolidated Chemical Provinces on Mars: Implications for Geologic Interpretations. Geophys. Res. Lett. 2022, 49, e2022GL099235. [Google Scholar] [CrossRef]
- Ojha, L.; Karunatillake, S.; Karimi, S.; Buffo, J. Amagmatic Hydrothermal Systems on Mars from Radiogenic Heat. Nat. Commun. 2021, 12, 1754. [Google Scholar] [CrossRef] [PubMed]
- Fossen, H.; Rotevatn, A. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth-Science Rev. 2016, 154, 14–28. [Google Scholar] [CrossRef]
- Acocella, V.; Morvillo, P.; Funiciello, R. What Controls Relay Ramps and Transfer Faults within Rift Zones? Insights from Analogue Models. J. Struct. Geol. 2005, 27, 397–408. [Google Scholar] [CrossRef]
- Pagli, C.; Yun, S.-H.; Ebinger, C.; Keir, D.; Wang, H. Strike-Slip Tectonics during Rift Linkage. Geology 2019, 47, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Skok, J.R.; Mustard, J.F.; Tornabene, L.L.; Pan, C.; Rogers, D.; Murchie, S.L. A Spectroscopic Analysis of Martian Crater Central Peaks: Formation of the Ancient Crust. J. Geophys. Res. E Planets 2012, 117. [Google Scholar] [CrossRef]
- Viviano, C.E.; Murchie, S.L.; Daubar, I.J.; Morgan, M.F.; Seelos, F.P.; Plescia, J.B. Composition of Amazonian Volcanic Materials in Tharsis and Elysium, Mars, from MRO/CRISM Reflectance Spectra. Icarus 2019, 328, 274–286. [Google Scholar] [CrossRef]
- Karunatillake, S.; Squyres, S.W.; Gasnault, O.; Keller, J.M.; Janes, D.M.; Boynton, W.V.; Finch, M.J. Recipes for Spatial Statistics with Global Datasets: A Martian Case Study. J. Sci. Comput. 2011, 46, 439–451. [Google Scholar] [CrossRef]
- Susko, D.; Karunatillake, S.; Kodikara, G.; Skok, J.R.; Wray, J.; Heldmann, J.; Cousin, A.; Judice, T. A Record of Igneous Evolution in Elysium, a Major Martian Volcanic Province. Sci. Rep. 2017, 7, 43177. [Google Scholar] [CrossRef] [Green Version]
- Abbott, D.H.; Isley, A.E. Extraterrestrial Influences on Mantle Plume Activity. Earth Planet. Sci. Lett. 2002, 205, 53–62. [Google Scholar] [CrossRef]
- Reese, C.C.; Solomatov, V.S.; Baumgardner, J.R.; Stegman, D.R.; Vezolainen, A.V. Magmatic Evolution of Impact-Induced Martian Mantle Plumes and the Origin of Tharsis. J. Geophys. Res. E Planets 2004, 109, E08009. [Google Scholar] [CrossRef]
- Roberts, J.H.; Barnouin, O.S. The Effect of the Caloris Impact on the Mantle Dynamics and Volcanism of Mercury. J. Geophys. Res. E Planets 2012, 117, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zuber, M.T.; Solomon, S.C.; Phillips, R.J.; Smith, D.E.; Tyler, G.L.; Aharonson, O.; Balmino, G.; Banerdt, W.B.; Head, J.W.; Johnson, C.L.; et al. Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity. Science 2000, 287, 1788–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genova, A.; Goossens, S.; Lemoine, F.G.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T. Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science. Icarus 2016, 272, 228–245. [Google Scholar] [CrossRef] [Green Version]
- Keen, C.E.; Courtney, R.C.; Dehler, S.A.; Williamson, M.C. Decompression Melting at Rifted Margins: Comparison of Model Predictions with the Distribution of Igneous Rocks on the Eastern Canadian Margin. Earth Planet. Sci. Lett. 1994, 121, 403–416. [Google Scholar] [CrossRef]
- Chorowicz, J. The East African Rift System. J. African Earth Sci. 2005, 43, 379–410. [Google Scholar] [CrossRef]
- Philpotts, A.; Ague, J. Principles of Igneous and Metamorphic Petrology; Cambridge University Press: Cambridge, UK, 2009; ISBN 9780521880060. [Google Scholar]
- Sautter, V.; Toplis, M.J.; Wiens, R.C.; Cousin, A.; Fabre, C.; Gasnault, O.; Maurice, S.; Forni, O.; Lasue, J.; Ollila, A.; et al. In Situ Evidence for Continental Crust on Early Mars. Nat. Geosci. 2015, 8, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Jackson, I. The Earth’s Mantle; Composition, Structure, and Evolution; Jackson, I., Ed.; Cambridge University Press: Cambridge, UK, 1998; ISBN 9780511573101. [Google Scholar]
- Courtillot, V.; Jaupart, C.; Manighetti, I.; Tapponnier, P.; Besse, J. On Causal Links between Flood Basalts and Continental Breakup. Earth Planet. Sci. Lett. 1999, 166, 177–195. [Google Scholar] [CrossRef]
- White, R.S.; McKenzie, D. Mantle Plumes and Flood Basalts. J. Geophys. Res. 1995, 100, 17543–17585. [Google Scholar] [CrossRef]
- Roberts, M.P.; Clemens, J.D. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology 1993, 21, 825. [Google Scholar] [CrossRef]
- Sautter, V.; Toplis, M.J.; Beck, P.; Mangold, N.; Wiens, R.; Pinet, P.; Cousin, A.; Maurice, S.; LeDeit, L.; Hewins, R.; et al. Magmatic Complexity on Early Mars as Seen through a Combination of Orbital, in-Situ and Meteorite Data. Lithos 2016, 254–255, 36–52. [Google Scholar] [CrossRef]
- Melosh, H.J.; Freed, A.M.; Johnson, B.C.; Blair, D.M.; Andrews-Hanna, J.C.; Neumann, G.A.; Phillips, R.J.; Smith, D.E.; Solomon, S.C.; Wieczorek, M.A.; et al. The Origin of Lunar Mascon Basins. Science 2013, 340, 1552–1555. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J.; Zhang, S.; Zhou, H. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume That Broke up Rodinia. Precambrian Res. 2003, 122, 85–109. [Google Scholar] [CrossRef]
- Carr, M.H.; Head, J.W. Geologic History of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Wünnemann, K.; Collins, G.S.; Melosh, H.J. A Strain-Based Porosity Model for Use in Hydrocode Simulations of Impacts and Implications for Transient Crater Growth in Porous Targets. Icarus 2006, 180, 514–527. [Google Scholar] [CrossRef]
- Collins, G.S.; Melosh, H.J.; Ivanov, B.A. Modeling Damage and Deformation in Impact Simulations. Meteorit. Planet. Sci. 2004, 39, 217–231. [Google Scholar] [CrossRef]
- Kameyama, M. ACuTEMan: A Multigrid-Based Mantle Convection Simulation Code and Its Optimization to the Earth Simulator. J. Earth Simulator 2005, 4, 2–10. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruj, T.; Komatsu, G.; Schmidt, G.; Karunatillake, S.; Kawai, K. Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sens. 2022, 14, 5664. https://doi.org/10.3390/rs14225664
Ruj T, Komatsu G, Schmidt G, Karunatillake S, Kawai K. Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sensing. 2022; 14(22):5664. https://doi.org/10.3390/rs14225664
Chicago/Turabian StyleRuj, Trishit, Goro Komatsu, Gene Schmidt, Suniti Karunatillake, and Kenji Kawai. 2022. "Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands" Remote Sensing 14, no. 22: 5664. https://doi.org/10.3390/rs14225664
APA StyleRuj, T., Komatsu, G., Schmidt, G., Karunatillake, S., & Kawai, K. (2022). Tectonism of Late Noachian Mars: Surface Signatures from the Southern Highlands. Remote Sensing, 14(22), 5664. https://doi.org/10.3390/rs14225664