An Improved Source Model of the 2021 6.1 Yangbi Earthquake (Southwest China) Based on InSAR and BOI Datasets
"> Figure 1
<p>Tectonic setting of the seismogenic area of the 2021 Yangbi earthquake. (<b>a</b>) Coverage of the Sentinel-1 SAR data in the study area. Red dot and star represent the epicenters given by USGS and GCMT, respectively. Red beach balls show the focal mechanism solutions (FMS). Gray circles display the distribution of historical earthquakes (<span class="html-italic">M</span> > 3.0) from GCMT since 1976. Blue beach balls denote the FMS of <span class="html-italic">M</span> > 6.0 historical earthquakes. Thin grey lines and thick red lines are the regional active faults and the typical strike-slip faults, respectively [<a href="#B13-remotesensing-14-04804" class="html-bibr">13</a>]. Magenta boxes show the spatial frames of the Sentinel-1 SAR data on ascending and descending tracks. Black dotted box shows the region in (<b>b</b>). (<b>b</b>) Topographic and active faults map surrounding the Yangbi event. Red beach balls represent the FMS and epicenter locations of <span class="html-italic">M</span> > 5.0 earthquakes since 1976. The distributions of the shocks occurred three days before and six days after the mainshock are shown by color-coded circles. (<b>c</b>) the magnitude-time evolution of the fore- and after-shock sequence by depth-dependent color-coded circles. (<b>d</b>) the depth frequency of the fore- and after-shocks.</p> "> Figure 2
<p>Coseismic and postseismic deformation fields of the 2021 Yangbi earthquake. (<b>a</b>,<b>d</b>) are the ascending and descending InSAR-derived interferograms, respectively. (<b>b</b>,<b>e</b>) are the corresponding unwrapped LOS deformations. (<b>c</b>,<b>f</b>) are the same as (<b>a</b>,<b>d</b>) but for the postseismic deformation rate. Red and blue beach balls show the focal mechanism solutions supplied by the USGS and GCMT catalogs, respectively. Red lines in (<b>c</b>,<b>f</b>) are the seismogenic faults used in source modeling. Thin grey lines indicate the regional active faults.</p> "> Figure 3
<p>(<b>a</b>) East–west (E–W) and (<b>b</b>) vertical components of the 2021 Yangbi earthquake calculated from LOS deformation. (<b>b</b>) E–W and (<b>e</b>) vertical components calculated from LOS and azimuth deformation. Red arrows denote the GPS horizontal and vertical displacement vectors. (<b>c</b>,<b>f</b>) Difference between (<b>a</b>,<b>b</b>,<b>d</b>,<b>e</b>), respectively.</p> "> Figure 4
<p>(<b>a</b>) Ascending and (<b>b</b>) descending BOI-derived azimuth displacements of the 2021 Yangbi earthquake. Red arrows indicate the GPS horizontal deformation vectors. The black line is the seismogenic fault used in source modeling.</p> "> Figure 5
<p>Downsampling of the (<b>a</b>) ascending and (<b>b</b>) descending InSAR-derived LOS coseismic displacements of the 2021 Yangbi earthquake.</p> "> Figure 6
<p>1-D and 2-D posterior PDF plots of the fault geometry parameters of the 2021 Yangbi earthquake. The bottom row is the histograms of the marginal probability density distribution for each parameter. Red solid lines represent the maximum a posteriori probability solution and red dashed lines denote the 95% confidence interval bounds.</p> "> Figure 7
<p>Slip distribution of the Yangbi earthquake derived from Sentinel-1 data. (<b>a</b>) is derived from InSAR only and (<b>b</b>) is derived jointly from InSAR and BOI. The black arrows in (<b>a</b>,<b>b</b>) indicate the slip direction. (<b>c</b>) Relationships between shocks distribution and coseismic slip distribution of Model 2. The orange and gray-black dots denote the relocated foreshocks and aftershocks on the fault plane, respectively [<a href="#B2-remotesensing-14-04804" class="html-bibr">2</a>]. The yellow star represents the position of the main earthquake. (<b>d</b>) Slip difference between the two models, with black dots showing the azimuth deformation points of the overlying faults obtained by BOI.</p> "> Figure 8
<p>Observed and simulated LOS coseismic deformation fields and residuals obtained by Model 1 and 2 from the ascending data (<b>upper row</b>) and descending data (<b>lower row</b>). (<b>a</b>,<b>f</b>) The observation fields. (<b>b</b>,<b>g</b>) The modelled displacement fields form Model 1. (<b>d</b>,<b>i</b>) The modelled displacement fields form Model 2. (<b>c</b>,<b>h</b>,<b>e</b>,<b>j</b>) The residuals from Model 1 and 2, respectively.</p> "> Figure 9
<p>Observed and simulated BOI-derived azimuth coseismic deformation fields and residuals obtained by Model 1 and 2 from the ascending data (<b>upper row</b>) and descending data (<b>lower row</b>). (<b>a</b>,<b>f</b>) The observation fields. (<b>b</b>,<b>g</b>) The modelled displacement fields form Model 1. (<b>d</b>,<b>i</b>) The modelled displacement fields form Model 2. (<b>c</b>,<b>h</b>,<b>e</b>,<b>j</b>) The residuals from Model 1 and 2, respectively.</p> "> Figure 10
<p>Model resolution for the checkerboard test. (<b>a</b>) Input slip model 1 and (<b>e</b>) input slip model 2 for calculating the synthetic displacements of InSAR data. (<b>b</b>,<b>f</b>) used InSAR LOS displacements. (<b>c</b>,<b>g</b>) combined InSAR LOS displacements and BOI azimuth displacements. (<b>d</b>,<b>h</b>) Difference between (<b>c</b>,<b>b</b>,<b>g</b>,<b>f</b>), respectively.</p> "> Figure 11
<p>Checkerboard test results for joint inversion model based on different input models. (<b>a</b>–<b>c</b>,<b>g</b>–<b>i</b>) 4 × 4, 5 × 5, 7 × 7 sub-patches for each concave-convex body in the six input models, respectively. (<b>d</b>–<b>f</b>,<b>j</b>–<b>l</b>) are the corresponding joint LOS and BOI-derived azimuth displacements inversions of the slip distributions.</p> "> Figure 12
<p>Relationships between aftershocks distribution and static Coulomb stress change. Coulomb stress change caused by coseismic slip is imaged in blue to red color scale. The red star shows the location of the mainshock, while the white circles denote the relocated aftershocks, and black stars are the <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> </mrow> </semantics></math> > 4.0 aftershocks. The distribution of aftershocks along the fault strike and tendency is shown as a histogram of the frequency distribution in blue and red.</p> "> Figure 13
<p>Coseismic Coulomb stress changes on the surrounding faults caused by the 2021 Yangbi earthquake. The magenta star denotes the location of the mainshock. YBF = Yangbi Fault, WX-WSF = Weixi-Weishan Fault; RRF 1–4 = Red River Fault 1–4; YS-BCF = Yongsheng-Binchuan Fault; LCJF 1–2 = Lancangjiang Fault 1–2.</p> ">
Abstract
:1. Introduction
Source | Lon (°) | Lat (°) | Length (km) | Width (km) | Depth (km) | Strike (°) | Dip (°) | Rake (°) | Slip (m) | Depth Range (km) | |
---|---|---|---|---|---|---|---|---|---|---|---|
GCMT | 100.02 | 25.61 | - | - | 15.0 | 315 | 86 | 168 | - | - | 6.1 |
USGS | 100.012 | 25.765 | - | - | 9.0 | 135 | 82 | −165 | - | - | 6.1 |
CENC | 99.87 | 25.67 | - | - | 8.0 | 138 | 81 | −160 | - | - | 6.4 |
Y. Wang et al. [4] | 99.932 | 25.646 | 14.0 | 3.0 | 2.25 | 138.8 | 87.2 | - | 0.9 | 2~9 | 6.06 |
B. Zhang et al. [5] | - | - | 10.9 | 1.9 | 7 | 315 | 86 | - | 0.61 | 3~13 | 6.14 |
K. Zhang et al. [6] | - | - | 28.0 | - | - | 135.0 | 80 | - | 0.8 | 4~12 | 6.04 |
S. Wang et al. [1] | 99.91 | 25.65 | 20.0 | 8.0 | 4.92 | 134.88 | 80 | −170 | 0.8 | 2~10 | 6.07 |
Chen et al. [7] | 99.88 | 25.66 | 18.0 | - | 8.0 | 138 | 80 | −159 | 0.95 | 2~14 | 6.10 |
This study | 99.891 | 25.685 | 13.1 | 1.42 | 4.14 | 314 | 86.65 | 167 | 1.1 | 2~11 | 6.11 |
2. Tectonic Setting and Regional Seismicity
3. Data Processing
3.1. InSAR Measurements
3.2. 2.5-D Displacement Determination
3.3. BOI Measurements
3.4. Results
3.4.1. Coseismic Displacements
3.4.2. Postseismic Displacements
4. Source Modeling
4.1. Uniform Slip Inversion
4.2. Finite Fault Slip Model
5. Discussion
5.1. Resolution Test of Two Groups of Models
5.2. Comparison of Coseismic Slip Models
5.3. Coseismic Stress Changes and Potential Seismic Risk Assessment of WX-WSF and RRF
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Liu, Y.; Shan, X.; Qu, C.; Zhang, G.; Xie, Z.; Zhao, D.; Fan, X.; Hua, J.; Liang, S.; et al. Coseismic surface deformation and slip models of the 2021 MS 6.4 Yangbi (Yunnan, China) earthquake. Seismol. Geol. 2021, 43, 692–705. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Long, F.; Zhu, G.; Qin, M.; Zhong, Y.; Xu, Q.; Yang, H. Short-Term Foreshock and Aftershock Patterns of the 2021 Ms 6.4 Yangbi Earthquake Sequence. Seismol. Res. Lett. 2021, 93, 21–32. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Wang, W.; Sun, K.; Shan, X. The seismogenic fault of the 2021 Yunnan Yangbi Ms6.4 earthquake. Seismol. Geol. 2021, 43, 706–721. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.; Shi, Y.; Zhang, X.; Chen, S.; Li, P.E.; Lu, D. Source Model and Simulated Strong Ground Motion of the 2021 Yangbi, China Shallow Earthquake Constrained by InSAR Observations. Remote Sens. 2021, 13, 4138. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, G.; Lu, Z.; He, Y.; Peng, M.; Feng, X. Coseismic Deformation Mechanisms of the 2021 Ms 6.4 Yangbi Earthquake, Yunnan Province, Using InSAR Observations. Remote Sens. 2021, 13, 3961. [Google Scholar] [CrossRef]
- Zhang, K.; Gan, W.; Liang, S.; Xiao, G.; Dai, C.; Wang, Y.; Li, Z.; Zhang, L.; Ma, G. Coseismic displacement and slip distribution of the 2021 May 21, Ms 6.4, Yangbi earthquake derived from GNSS observations. Chin. J. Geophys. 2021, 64, 2253–2266. [Google Scholar] [CrossRef]
- Chen, J.; Hao, J.; Wang, Z.; Xu, T. The 21 May 2021 Mw 6.1 Yangbi Earthquake—A Unilateral Rupture Event with Conjugately Distributed Aftershocks. Seismol. Res. Lett. 2022, 93, 1382–1399. [Google Scholar] [CrossRef]
- He, P.; Wen, Y.; Xu, C.; Chen, Y. High-quality three-dimensional displacement fields from new-generation SAR imagery: Application to the 2017 Ezgeleh, Iran, earthquake. J. Geod. 2018, 93, 573–591. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, Z.; Aoki, Y.; Liu, J.; Yue, D.; Hu, J.; Zhou, C.; Li, Z. Refining slip distribution in moderate earthquakes using Sentinel-1 burst overlap interferometry: A case study over 2020 May 15 Mw 6.5 Monte Cristo Range Earthquake. Geophys. J. Int. 2022, 229, 472–486. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, G.; Wang, T.; Bürgmann, R. Toward full exploitation of coherent and incoherent information in Sentinel-1 TOPS data for retrieving surface displacement: Application to the 2016 Kumamoto (Japan) earthquake. Geophys. Res. Lett. 2017, 44, 1758–1767. [Google Scholar] [CrossRef]
- Grandin, R.; Klein, E.; Métois, M.; Vigny, C. Three-dimensional displacement field of the 2015Mw8.3 Illapel earthquake (Chile) from across- and along-track Sentinel-1 TOPS interferometry. Geophys. Res. Lett. 2016, 43, 2552–2561. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chen, L. Active tectonics and earthquake activities in China. Earth Sci. Front. 2003, 10, 66–73. [Google Scholar]
- Deng, Q.; Cheng, S.; Ma, J.; Du, P. Seismic activitiesand earthquake potentialin theTibetan Platea. Chin. J. Geophys. 2014, 57, 678–697. [Google Scholar] [CrossRef]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. Recent tectonic variation patterns and dynamic sources of active blocks in Sichuan-Yunnan region. Sci. China Ser. D Earth Sci. 2003, 33, 151–162. [Google Scholar]
- Chang, Z.; Chang, H.; Li, J.; Dai, B.; Zhou, Q.; Zhu, J.; Luo, Z. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou Fault. J. Seismol. Res. 2016, 39, 579–586. [Google Scholar]
- Chang, Z.; Chang, H.; Zang, Y.; Dai, B. Recent active features of Weixi-Qiaohou Fault and its relationship with the Honghe Fault. J. Geomech. 2016, 22, 517–530. [Google Scholar]
- Xiang, H.; Han, Z.; Guo, S.; Zhang, W.; Chen, L. Large-scale dextral strike-slip movement and associated tectonic deformation along the Red-River fault zone. Seismol. Geol. 2004, 26, 597–610. [Google Scholar]
- Loveless, J.P.; Meade, B.J. Partitioning of localized and diffuse deformation in the Tibetan Plateau from joint inversions of geologic and geodetic observations. Earth Planet. Sci. Lett. 2011, 303, 11–24. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Li, X.; Xiang, H.; Chen, T.; Zhang, G. Fault displacement and recurrence intervals of earthquakes at the northern segment of the Honghe fault zone, Yunnan Province. Seismol. Geol. 1984, 6, 1–12. [Google Scholar]
- Lu, X.; Tan, K.; Li, Q.; Li, C.; Wang, D.; Zhang, C. Analysis of the current activity of the Red River fault based on GPS data: New seismological inferences. J. Seismol. 2021, 25, 1525–1535. [Google Scholar] [CrossRef]
- Chang, Z.; Chang, H.; Li, J.; Hou, J.; Song, Z.; Mao, D. Late quaternary activity of the Chuxiong-Nanhua fault and the 1680 Chuxiong M6¾ earthquake. Earthq. Res. China 2015, 31, 492–500. [Google Scholar]
- Wu, X.; Feng, G.; He, L.; Lu, H. High precision coseismic deformation monitoring method based on time-series InSAR analysis. Rev. Geophys. Planet. Phys. 2022, 53, 1–10. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Li, Z.W.; Ding, X.L.; Huang, C.; Zhu, J.J.; Chen, Y.L. Improved filtering parameter determination for the Goldstein radar interferogram filter. ISPRS J. Photogramm. Remote Sens. 2008, 63, 621–634. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Feng, G.; Feng, Z.; Miao, L.; Wang, Y.; Yang, D.; Luo, S. Pre- and post-failure spatial-temporal deformation pattern of the Baige landslide retrieved from multiple radar and optical satellite images. Eng. Geol. 2020, 279, 105880. [Google Scholar] [CrossRef]
- Fujiwara, S.; Nishimura, T.; Murakami, M.; Nakagawa, H.; Tobita, M.; Rosen, P.A. 2.5-D surface deformation of M6.1 earthquake near Mt Iwate detected by SAR interferometry. Geophys. Res. Lett. 2000, 27, 2049–2052. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China Earth Sci. 2022, 65, 687–697. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Gao, H.; Liao, M.; Feng, G. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sens. 2021, 13, 1678. [Google Scholar] [CrossRef]
- Anderson, K.; Segall, P. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St.Helens 2004–2008. J. Geophys. Res. Solid Earth 2013, 118, 2017–2037. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosyst. 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Hastings, W.K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970, 57, 97–109. [Google Scholar] [CrossRef]
- JÓnsson, S.n.; Zebker, H.; Segall, P.; Amelung, F. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bull. Seismol. Soc. Am. 2002, 92, 1377–1389. [Google Scholar] [CrossRef]
- Bro, R.; De Jong, S. A fast non-negativity-constrained least squares algorithm. J. Chemom. 1997, 11, 393–401. [Google Scholar] [CrossRef]
- Yue, H.; Ross, Z.E.; Liang, C.; Michel, S.; Fattahi, H.; Fielding, E.; Moore, A.; Liu, Z.; Jia, B. The 2016 KumamotoMw=7.0 Earthquake: A Significant Event in a Fault-Volcano System. J. Geophys. Res. Solid Earth 2017, 122, 9166–9183. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, L.; Qiao, X.; Zhu, C.; Shan, X.; Li, Y. Geodetic Model of the 2018 Mw7.2 Pinotepa, Mexico, Earthquake Inferred from InSAR and GPS Data. Bull. Seismol. Soc. Am. 2020, 110, 1115–1124. [Google Scholar] [CrossRef]
- Melgar, D.; Ganas, A.; Taymaz, T.; Valkaniotis, S.; Crowell, B.W.; Kapetanidis, V.; Tsironi, V.; Yolsal-Çevikbilen, S.; Öcalan, T. Rupture kinematics of 2020 January 24 Mw 6.7 Doğanyol-Sivrice, Turkey earthquake on the East Anatolian Fault Zone imaged by space geodesy. Geophys. J. Int. 2020, 223, 862–874. [Google Scholar] [CrossRef]
- He, L.; Feng, G.; Wu, X.; Lu, H.; Xu, W.; Wang, Y.; Liu, J.; Hu, J.; Li, Z. Coseismic and Early Postseismic Slip Models of the 2021 Mw 7.4 Maduo Earthquake (Western China) Estimated by Space-Based Geodetic Data. Geophys. Res. Lett. 2021, 48, e2021GL095860. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.; He, Z.; Fang, L.; Chen, Z. Aseismic Slip and Cascade Triggering Process of Foreshocks Leading to the 2021 Mw 6.1 Yangbi Earthquake. Seismol. Res. Lett. 2022, 93, 1413–1428. [Google Scholar] [CrossRef]
- Stein, R.S.; King, G.C.; Lin, J. Stress triggering of the 1994 m = 6.7 northridge, california, earthquake by its predecessors. Science 1994, 265, 1432–1435. [Google Scholar] [CrossRef]
- Perfettini, H.; Avouac, J.P. Modeling afterslip and aftershocks following the 1992 Landers earthquake. J. Geophys. Res. 2007, 112, B07409. [Google Scholar] [CrossRef]
- Johnson, K.M. Frictional Properties on the San Andreas Fault near Parkfield, California, Inferred from Models of Afterslip following the 2004 Earthquake. Bull. Seismol. Soc. Am. 2006, 96, S321–S338. [Google Scholar] [CrossRef]
- Gao, H.; Liao, M.; Liang, X.; Feng, G.; Wang, G. Coseismic and Postseismic Fault Kinematics of the July 22, 2020, Nima (Tibet) Ms6.6 Earthquake: Implications of the Forming Mechanism of the Active N-S-Trending Grabens in Qiangtang, Tibet. Tectonics 2022, 41, e2021TC006949. [Google Scholar] [CrossRef]
- Symithe, S.J.; Calais, E.; Haase, J.S.; Freed, A.M.; Douilly, R. Coseismic Slip Distribution of the 2010 M 7.0 Haiti Earthquake and Resulting Stress Changes on Regional Faults. Bull. Seismol. Soc. Am. 2013, 103, 2326–2343. [Google Scholar] [CrossRef]
- Jin, H.; Gao, Y.; Su, X.; Fu, G. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data. Earth Planet. Phys. 2019, 3, 53–61. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
Satellite | Orbits | Acquisition Dates D-InSAR | Number of Images | Acquisition Dates SBAS-InSAR | Number of Images |
---|---|---|---|---|---|
Sentinel-1 | Ascending (T99) | Before the earthquake | 10 | Post-seismic deformation | 20 |
25 February 2021 2 April 2021 | |||||
14 April 2021 8 May 2021 | |||||
20 May 2021 | |||||
After the earthquake | 1 June 2021–20 February 2022 | ||||
26 May 2021 1 June 2021 | |||||
Descending (T135) | Before the earthquake | 10 | Post-seismic deformation | 19 | |
23 March 2021 4 April 2021 | |||||
16 April 2021 28 April 2021 | |||||
10 May 2021 | |||||
After the earthquake | 1 June 2021–20 February 2022 | ||||
22 May 2021 3 June 2021 |
Parameters | Length (km) | Width (km) | Depth (km) | Dip (°) | Strike (°) | X Center (km) | Y Center (km) | Strike-Slip (m) | Dip-Slip (m) |
---|---|---|---|---|---|---|---|---|---|
Optimal | 13.10 | 1.42 | 4.14 | 86.65 | 314 | −9.43 | 3.77 | 1.99 | 0.08 |
Mean | 12.93 | 1.64 | 4.03 | 86.80 | 314 | −9.51 | 3.82 | 1.76 | 0.07 |
Median | 12.93 | 1.59 | 4.03 | 86.82 | 314 | −9.50 | 3.82 | 1.79 | 0.07 |
2.5% | 12.09 | 1.37 | 3.77 | 89.15 | 313 | −9.86 | 3.51 | 1.31 | 0.03 |
97.5% | 13.82 | 2.20 | 4.25 | 84.34 | 315 | −9.17 | 4.12 | 1.99 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Feng, G.; He, L.; Liu, J.; Gao, H.; Wang, Y.; Wu, X.; Wang, Y.; An, Q.; Zhao, Y.
An Improved Source Model of the 2021
Lu H, Feng G, He L, Liu J, Gao H, Wang Y, Wu X, Wang Y, An Q, Zhao Y.
An Improved Source Model of the 2021
Lu, Hao, Guangcai Feng, Lijia He, Jihong Liu, Hua Gao, Yuedong Wang, Xiongxiao Wu, Yuexin Wang, Qi An, and Yingang Zhao.
2022. "An Improved Source Model of the 2021