Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island
"> Figure 1
<p>(<b>a</b>) Shaded relief and contour map (equidistance 500 m) of Stromboli volcano, with location of the Sciara del Fuoco using the April 2020 and February 2020 digital elevation models for the subaerial and submarine parts, respectively; the inset shows the location of Stromboli volcano (red point) in the Tyrrhenian Sea. (<b>b</b>) This is a 3-D image of the Sciara del Fuoco collapse scar, which can be morphologically divided in the north-eastern (NE), central (C), and south-western (SW) sectors and in the subaerial (coloured) and submarine (grey) parts.</p> "> Figure 2
<p>(<b>a</b>) 19 May 2021 oblique photo of the SdF showing the lava flows that reached the sea after the start of the overflows that caused the collapse of the NE crater-rim; (<b>b</b>) 7 July 2021 photo of the SdF showing the accumulation of lava and volcaniclastic deposits related to the eruptive activity of May and June 2021; (<b>c</b>) 27 July 2021 oblique photo of the central part of the SdF showing the remnants of the 24–25 January 2021 and the 19 May 2021 overflows, partially draped by the successive May–June 2021 volcaniclastic material.</p> "> Figure 3
<p>Chronology of data acquisition between February 2020 and July 2021 and main eruptive events in the same period (see also <a href="#remotesensing-14-04605-t002" class="html-table">Table 2</a>).</p> "> Figure 4
<p>Sciara del Fuoco topographic changes recognized between April 2020 and July 2021 through DEM comparisons; SE and SA stand for subaerial erosion and accretion, respectively. (<b>a</b>) May 2021 vs. April 2020 elevation difference map draped over the May 2021 DEM; (<b>b</b>) June 2021 vs. May 2021 elevation difference map draped over the June 2021 DEM. The main morphological changes were due to the 19 May 2021 NEC-rim collapse PDC and subsequent lava flows; (<b>c</b>) July 2021 vs. June 2021 elevation difference map draped over the July 2021 DEM; (<b>d</b>) July 2021 vs. April 2020 comparison shows the morphological changes of the subaerial SdF during the complete investigation period. The frames (<b>a</b>–<b>c</b>) were cleaned for the residual mismatching between DEMs after the co-registration. Frame (<b>d</b>) was not cleaned to show the distribution and the magnitude of the residual mismatching between the first and the last DEMs.</p> "> Figure 5
<p>(<b>a</b>) Elevation difference map (cleaned for the residual mismatching between DEMs) between the July 2021 and February 2020 bathymetries draped over the 2021 DEM; ME and MA for marine erosion and accretion, respectively. (<b>b</b>) Elevation difference map for the subaerial (July 2021–April 2020) and submarine (July 2021–February 2020) SdF draped in semi-transparency over the July 2021 submarine and subaerial DEMS; note that the elevation difference maps were not cleaned to show the distribution and the magnitude of the residual mismatching between the first and the last DEMs.</p> "> Figure 6
<p>(<b>a</b>) The 2020 shaded relief map and contours (equidistance 50 m) of the central part of the SdF, where a main depression is recognizable, partially filled by small ridges and fan-shaped features; NSDT: nearshore submarine depositional terrace and related average depth of the outer edge. (<b>b</b>) The 2021 shaded relief map and contours (equidistance as in (<b>a</b>)); black and red contour lines refer to the 2020 and 2021 DEMs, respectively. MA1 and ME1–2 as in <a href="#remotesensing-14-04605-f005" class="html-fig">Figure 5</a>.</p> "> Figure 7
<p>RGB colour composite of amplitude CSK images: (<b>a</b>) 24 March 2021–18 December 2020; (<b>b</b>) 25 May 2021–24 March 2021; (<b>c</b>) 28 June 2021–25 May 2021.</p> "> Figure 8
<p>(<b>a</b>) 30 July 2021 CSK-SAR amplitude image of the subaerial SdF slope combined with the 27 July 2021 multibeam (MBES in (<b>a</b>)) and side scan sonar (SSS in (<b>b</b>)) backscatter data of the shallow submarine portion of the SdF; black lines are contours (equidistance 100 m), and blue dashed lines are the SSS track lines. (<b>c</b>) Zoom of MBES backscatter and CKS-SAR image; (<b>d</b>) Zoom of the SSS backscatter with the 7 July 2021 AUV optical image; ME1, ME2, and NSDT are as in in the previous figures. Note that SSS data ensonified seafloor areas more proximal to the coast with respect to MBES data due to the different acquisition geometry of the two systems.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Topo-Bathymetric Monitoring of the SdF Slope and CKS-SAR Amplitude Image
2.2. Bathymetric Monitoring of the SdF Slope and MBES/SSS Backscatter Data
2.3. DEM Co-Registration, Error Estimation, and Topographic Change Detection
3. Results
3.1. Topo-Bathymetric Changes
3.2. CSK-SAR Amplitude Image and MBES/SSS Backscatter Data
4. Discussions
4.1. Reconstruction of the Main Eruptive and Erosive-Depositional Phenomena during the Monitoring Period
4.2. Textural Variations along the SdF Slope by Integreating CKS-SAR Image and Marine Backscatter Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thouret, J.C. Volcanic geomorphology—An overview. Earth-Sci. Rev. 1999, 47, 95–131. [Google Scholar] [CrossRef]
- Romagnoli, C.; Jakobsson, S.P. Post-eruptive morphological evolution of island volcanoes: Surtsey as a modern case study. Geomorphology 2015, 250, 384–396. [Google Scholar] [CrossRef]
- Civico, R.; Ricci, T.; Scarlato, P.; Andronico, D.; Cantarero, M.; Carr, B.B.; De Beni, E.; Del Bello, E.; Johnson, J.B.; Kueppers, U.; et al. Unoccupied Aircraft Systems (UASs) Reveal the Morphological Changes at Stromboli Volcano (Italy) before, between, and after the 3 July and 28 August 2019 Paroxysmal Eruptions. Remote Sens. 2021, 13, 2870. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Romagnoli, C.; Tommasi, P.; Bosman, A. The Stromboli 2002 tsunamigenic submarine slide: Characteristics and possible failure mechanisms. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Tinti, S.; Manucci, A.; Pagnoni, G.; Armigliato, A.; Zaniboni, F. The 30 December 2002 landslide-induced tsunamis in Stromboli: Sequence of the events reconstructed from the eyewitness accounts. Nat. Hazards Earth Syst. Sci. 2005, 5, 763–775. [Google Scholar] [CrossRef]
- Grilli, S.T.; Tappin, D.R.; Carey, S.; Watt, S.F.L.; Ward, S.N.; Grilli, A.R.; Engwell, S.L.; Zhang, C.; Kirby, J.T.; Schambach, L.; et al. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 2019, 9, 11946. [Google Scholar] [CrossRef]
- Mitchell, N.C.; Quartau, R.; Madeira, J. Assessing landslide movements in volcanic islands using near-shore marine geophysical data: South Pico island, Azores. Bull. Volcanol. 2012, 74, 483–496. [Google Scholar] [CrossRef]
- Le Friant, A.; Harford, C.L.; Deplus, C.; Boudon, G.; Sparks, R.S.J.; Herd, R.A.; Komorowski, J.C. Geomorphological evolution of Montserrat (West Indies): Importance of flank collapse and erosional processes. J. Geol. Soc. Lond. 2004, 161, 147–160. [Google Scholar] [CrossRef]
- Tibaldi, A.; Pasquarè, F.A.; Papanikolaou, D.; Nomikou, P. Discovery of a huge sector collapse at the Nisyros volcano, Greece, by on-land and offshore geological-structural data. J. Volcanol. Geotherm. Res. 2008, 177, 485–499. [Google Scholar] [CrossRef]
- Mitchell, N.C.; Beier, C.; Rosin, P.L.; Quartau, R.; Tempera, F. Lava penetrating water: Submarine lava flows around the coasts of Pico Island, Azores. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Quartau, R.; Hipólito, A.; Romagnoli, C.; Casalbore, D.; Madeira, J.; Tempera, F.; Roque, C.; Chiocci, F.L. The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: Insights from Terceira Island (Azores). Geochem. Geophys. Geosyst. 2014, 15, 1801–1826. [Google Scholar] [CrossRef]
- Romagnoli, C.; Casalbore, D.; Ricchi, A.; Lucchi, F.; Quartau, R.; Bosman, A.; Tranne, C.A.; Chiocci, F.L. Morpho-bathymetric and seismo-stratigraphic analysis of the insular shelf of Salina (Aeolian archipelago) to unveil its Late-Quaternary geological evolution. Mar. Geol. 2018, 395, 133–151. [Google Scholar] [CrossRef]
- Clare, M.A.; Le Bas, T.; Price, D.M.; Hunt, J.E.; Sear, D.; Cartigny, M.J.B.; Vellinga, A.; Symons, W.; Firth, C.; Cronin, S. Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys. Front. Earth Sci. 2018, 6, 223. [Google Scholar] [CrossRef]
- Baldi, P.; Bosman, A.; Chiocci, F.L.; Marsella, M.; Romagnoli, C.; Sonnessa, A. Integrated subaerial-submarine morphological evolution of the Sciara del Fuoco after the 2002 landslide. The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption. Am. Geophys. Union Geophys. Monogr. Ser. 2018, 171–182. [Google Scholar] [CrossRef]
- Casalbore, D.; Di Traglia, F.; Bosman, A.; Romagnoli, C.; Casagli, N.; Chiocci, F.L. Submarine and subaerial morphological changes associated with the 2014 eruption at Stromboli Island. Remote Sens. 2021, 13, 2043. [Google Scholar] [CrossRef]
- Di Traglia, F.; Fornaciai, A.; Casalbore, D.; Favalli, M.; Manzella, I.; Romagnoli, C.; Chiocci, F.L.; Cole, P.; Nolesini, T.; Casagli, N. Subaerial-submarine morphological changes at Stromboli volcano (Italy) induced by the 2019–2020 eruptive activity. Geomorphology 2022, 400, 108093. [Google Scholar] [CrossRef]
- Trofimovs, J.; Amy, L.; Boudon, G.; Deplus, C.; Doyle, E.; Fournier, N.; Hart, M.B.; Komorowski, J.C.; Le Friant, A.; Lock, E.J.; et al. Submarine pyroclastic deposits formed at the Soufrière Hills volcano, Montserrat (1995–2003): What happens when pyroclastic flows enter the ocean? Geology 2006, 34, 549–552. [Google Scholar] [CrossRef]
- Soule, S.A.; Zoeller, M.; Parcheta, C. Submarine lava deltas of the 2018 eruption of Kīlauea volcano. Bull. Volcanol. 2021, 83, 23. [Google Scholar] [CrossRef]
- Tibaldi, A. Multiple sector collapses at Stromboli volcano, Italy: How they work. Bull. Volcanol. 2001, 63, 112–125. [Google Scholar] [CrossRef]
- Francalanci, L.; Lucchi, F.; Keller, J.; De Astis, G.; Tranne, C.A. Eruptive, volcano-tectonic and magmatic history of the Stromboli volcano (north-eastern Aeolian archipelago). Geol. Soc. Lond. Mem. 2013, 37, 397–471. [Google Scholar] [CrossRef]
- Kokelaar, P.; Romagnoli, C. Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull. Volcanol. 1995, 57, 240–262. [Google Scholar] [CrossRef]
- Rosi, M.; Bertagnini, A.; Landi, P. Onset of the persistent activity at Stromboli volcano (Italy). Bull. Volcanol. 2000, 62, 294–300. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Ciampalini, A.; Solari, L.; Frodella, W.; Bellotti, F.; Fumagalli, A.; De Rosa, G.; Casagli, N. Tracking morphological changes and slope instability using spaceborne and ground-based SAR data. Geomorphology 2018, 300, 95–112. [Google Scholar] [CrossRef]
- Giordano, G.; De Astis, G. The summer 2019 basaltic Vulcanian eruptions (paroxysms) of Stromboli. Bull. Volcanol. 2021, 83, 1. [Google Scholar] [CrossRef]
- Casalbore, D.; Passeri, F.; Tommasi, P.; Verrucci, L.; Bosman, A.; Romagnoli, C.; Chiocci, F.L. Small-scale slope instability on the submarine flanks of insular volcanoes: The case-study of the Sciara del Fuoco slope (Stromboli). Int. J. Earth Sci. 2020, 109, 2643–2658. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S.; Garfì, G.; Lodato, L.; Patanè, D. Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Marani, M.P.; Gamberi, F.; Rosi, M.; Bertagnini, A.; Di Roberto, A. Subaqueous density flow processes and deposits of an island volcano landslide (Stromboli Island, Italy). Sedimentology 2009, 56, 1488–1504. [Google Scholar] [CrossRef]
- Barberi, F.; Civetta, L.; Rosi, M.; Scandone, R. Chronology of the 2007 eruption of Stromboli and the activity of the Scientific Synthesis Group. J. Volcanol. Geotherm. Res. 2009, 182, 123–130. [Google Scholar] [CrossRef]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Giudicepietro, F.; Macedonio, G.; Cappello, A.; Nolesini, T.; Pecora, E.; Bilotta, G.; Centorrino, V.; et al. Overflows and pyroclastic density currents in March–April 2020 at Stromboli volcano detected by remote sensing and seismic monitoring data. Remote Sens. 2020, 12, 3010. [Google Scholar] [CrossRef]
- Calvari, S.; Intrieri, E.; Di Traglia, F.; Bonaccorso, A.; Casagli, N.; Cristaldi, A. Monitoring crater-wall collapse at active volcanoes: A study of the 12 January 2013 event at Stromboli. Bull. Volcanol. 2016, 78, 39. [Google Scholar] [CrossRef]
- Di Traglia, F.; Calvari, S.; D’Auria, L.; Nolesini, T.; Bonaccorso, A.; Fornaciai, A.; Esposito, A.; Cristaldi, A.; Favalli, M.; Casagli, N. The 2014 Effusive Eruption at Stromboli: New Insights from In Situ and Remote-Sensing Measurements. Remote Sens. 2018, 10, 2035. [Google Scholar] [CrossRef]
- LGS—Università di Firenze. Bollettino Settimanale Dell’Attività del Vulcano Stromboli (13–20 Maggio 2021). 2021. Available online: http://lgs.geo.unifi.it/stromboli/bollettini/2021/05/Bollettino_UNIFI-LGS_Stromboli_20210520.pdf (accessed on 30 August 2022).
- Re, G.; Pompillio, M.; Del Carlo, P.; Di Roberto, A. Physical and morphological characterization of the 19 May 2021 ash cloud deposit at Stromboli (Italy). Sci. Rep. 2022, 12, 10777. [Google Scholar] [CrossRef] [PubMed]
- Calvari, S.; Di Traglia, F.; Ganci, G.; Bruno, V.; Ciancitto, F.; Di Lieto, B.; Gambino, S.; Garcia, A.; Giudicepietro, F.; Inguaggiato, S.; et al. Multi-parametric study of an eruptive phase comprising unrest, major explosions, crater failure, pyroclastic density currents and lava flows: Stromboli volcano, 1 December 2020–30 June 2021. Front. Earth Sci. 2022, 10, 899635. [Google Scholar] [CrossRef]
- Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef]
- Gracchi, T.; Rossi, G.; Tacconi Stefanelli, C.; Tanteri, L.; Pozzani, R.; Moretti, S. Tracking the Evolution of Riverbed Morphology on the Basis of UAV Photogrammetry. Remote Sens. 2021, 13, 829. [Google Scholar] [CrossRef]
- Gracchi, T.; Tacconi Stefanelli, C.; Rossi, G.; Di Traglia, F.; Nolesini, T.; Tanteri, L.; Casagli, N. UAV-Based Multitemporal Remote Sensing Surveys of Volcano Unstable Flanks: A Case Study from Stromboli. Remote Sens. 2022, 14, 2489. [Google Scholar] [CrossRef]
- Arnold, D.; Biggs, J.; Wadge, G.; Ebmeier, S.; Odbert, H.; Poland, M. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change. Geosphere 2016, 12, 1300–1315. [Google Scholar] [CrossRef]
- Chaussard, E. A low-cost method applicable worldwide for remotely mapping lava dome growth. J. Volcanol. Geotherm. Resour. 2017, 341, 33–41. [Google Scholar] [CrossRef]
- Poland, M.P. Synthetic aperture radar volcanic flow maps (SAR VFMs): A simple method for rapid identification and mapping of volcanic mass flows. Bull. Volcanol. 2022, 84, 32. [Google Scholar] [CrossRef]
- Wadge, G.; Cole, P.; Stinton, A.; Komorowski, J.-C.; Stewart, R.; Toombs, A.C.; Legendre, Y. Rapid topographic change measured by high-resolution satellite radar at Soufriere Hills Volcano, Montserrat, 2008–2010. J. Volcanol. Geotherm. Resour. 2011, 199, 142–152. [Google Scholar] [CrossRef]
- Ebmeier, S.K.; Biggs, J.; Muller, C.; Avard, G. Thin-skinned mass-wasting responsible for widespread deformation at Arenal volcano. Front. Earth Sci. 2014, 2, 35. [Google Scholar] [CrossRef]
- Pinel, N.; Bourlier, C.; Saillard, J. Degree of roughness of rough layers: Extensions of the Rayleigh roughness criterion and some applications. Prog. Electromagn. Res. 2010, 19, 41–63. [Google Scholar] [CrossRef]
- Foumelis, M.; Blasco, J.M.D.; Brito, F.; Pacini, F.; Pishehvar, P. Snapping for Sentinel-1 Mission on Geohazards Exploitation Platform: An Online Medium Resolution Surface Motion Mapping Service. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 3991–3994. [Google Scholar]
- Dekker, R.J. Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens. 1998, 19, 1133–1146. [Google Scholar] [CrossRef]
- Blondel, P. The Handbook of Sidescan Sonar; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Klaucke, I. Sidescan sonar. In Submarine Geomorphology; Springer: Cham, Switzerland, 2018; pp. 13–24. [Google Scholar]
- Favalli, M.; Fornaciai, A.; Mazzarini, F.; Harris, A.; Neri, M.; Behncke, B.; Pareschi, M.T.; Tarquini, S.; Boschi, E. Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Nannipieri, L.; Harris, A.; Calvari, S.; Lormand, C. UAV-based remote sensing surveys of lava flow fields: A case study from Etna’s 1974 channel-fed lava flows. Bull. Volcanol. 2018, 80, 29. [Google Scholar] [CrossRef]
- Moore, J.; Phillips, R.L.; Grigg, R.W.; Peterson, D.W.; Swanson, D.A. Flow of lava into the sea, 1969–1971, Kilauea volcano, Hawaii. GSA Bull. 1973, 84, 537–546. [Google Scholar] [CrossRef]
- Obata, S.; Umino, S. Morphology of AD 864 Aokigahara lava flow exposed on the coast of Motosuko Lake, Fuji Volcano. Kazan 1999, 44, 201–216. [Google Scholar]
- Rader, E.; Vanderkluysen, L.; Clarke, A. The role of unsteady effusion rates on inflation in long-lived lava flow fields. Earth Planet. Sci. Lett. 2017, 477, 73–83. [Google Scholar] [CrossRef]
- Lodato, L.; Spampinato, L.; Harris, A.; Calvari, S.; Dehn, J.; Patrick, M. Themorphology and evolution of the Stromboli 2002–2003 lava flow field: An example of a basaltic flow field emplaced on a steep slope. Bull. Volcanol. 2007, 69, 661–679. [Google Scholar] [CrossRef]
- Casalbore, D.; Romagnoli, C.; Chiocci, F.; Frezza, V. Morpho-sedimentary characteristics of the volcaniclastic apron around Stromboli volcano (Italy). Mar. Geol. 2010, 269, 132–148. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Solari, L.; Ciampalini, A.; Frodella, W.; Steri, D.; Allotta, B.; Rindi, A.; Monni, N.; Marini, L.; et al. Lava delta deformation as a proxy for submarine slope instability. Earth Planet. Sci. Lett. 2018, 488, 46–58. [Google Scholar] [CrossRef]
- Babonneau, N.; Delacourt, C.; Cancouët, R.; Sisavath, E.; Bachèlery, P.; Mazuel, A.; Jorry, S.J.; Deschamps, A.; Ammann, J.; Villeneuve, N. Direct sediment transfer from land to deep-sea: Insights into shallow multibeam bathymetry at La Réunion Island. Mar. Geol. 2013, 346, 47–57. [Google Scholar] [CrossRef]
- Innocentini, S.; Quartau, R.; Casalbore, D.; Roque, C.; Vinhas, A.; Santos, R.; Rodrigues, A. Morpho-stratigraphic characterization of the southern shelf of Porto Santo Island (Madeira Archipelago): Insights for small-scale instability processes and post-LGM sedimentary architecture. Mar. Geol. 2022, 444, 106729. [Google Scholar] [CrossRef]
- Hernández-Molina, F.J.; Fernández-Salas, L.M.; Lobo, F.; Somoza, L.; Díaz-del-Río, V.; Alveirinho Dias, J.M. The infralittoral prograding wedge: A new large-scale progradational sedimentary body in shallow marine environments. Geo-Mar. Lett. 2000, 20, 109–117. [Google Scholar] [CrossRef]
- Mitchell, N.C. Modeling the rollovers of sandy clinoforms from the gravity effect on wave-agitated sand. J. Sediment. Res. 2012, 82, 464–468. [Google Scholar] [CrossRef]
- Casalbore, D.; Falese, F.; Martorelli, E.; Romagnoli, C.; Chiocci, F.L. Submarine depositional terraces in the Tyrrhenian Sea as a proxy for paleo-sea level reconstruction: Problems and perspective. Quat. Int. 2017, 439, 169–180. [Google Scholar] [CrossRef]
- Bosman, A.; Casalbore, D.; Romagnoli, C.; Chiocci, F.L. Formation of an ‘a’ā lava delta: Insights from time-lapse multibeam bathymetry and direct observations during the Stromboli 2007 eruption. Bull. Volcanol. 2014, 76, 838. [Google Scholar] [CrossRef]
- Wu, L.; Tajima, Y.; Yamanaka, Y.; Shimozono, T.; Sato, S. Study on characteristics of SAR imagery around the coast for shoreline detection. Coast. Eng. J. 2019, 61, 152–170. [Google Scholar]
- Ottinger, M.; Kuenzer, C. Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sens. 2020, 12, 2228. [Google Scholar] [CrossRef]
- Zribi, M.; Le Morvan, A.; Baghdadi, N. Dielectric constant modelling with soil–air composition and its effect on SAR radar signal backscattered over soil surface. Sensors 2008, 8, 6810–6824. [Google Scholar] [CrossRef]
- Schaefer, L.N.; Di Traglia, F.; Chaussard, E.; Lu, Z.; Nolesini, T.; Casagli, N. Monitoring volcano slope instability with Synthetic Aperture Radar: A review and new data from Pacaya (Guatemala) and Stromboli (Italy) volcanoes. Earth-Sci. Rev. 2019, 192, 236–257. [Google Scholar] [CrossRef]
- Caplan-Auerbach, J.; Fox, C.G.; Duennebier, F.K. Hydroacoustic detection of submarine landslides on Kilauea volcano. Geophys. Res. Lett. 2001, 28, 1811–1813. [Google Scholar] [CrossRef] [Green Version]
- Ercilla, G.; Casas, D.; Alonso, B.; Casalbore, D.; Galindo-Zaldívar, J.; García-Gil, S.; Martorelli, E.; Vásquez, J.-T.; Azpiroz-Zabala, M.; DoCouto, D.; et al. Offshore geological hazards: Charting the course of progress and future directions. Oceans 2021, 2, 393–428. [Google Scholar] [CrossRef]
Date | Description | References |
---|---|---|
28 February 2020 | Lava overflow from NEC | [29] |
28 March 2020–1 April 2020 | Sporadic lava overflows from NEC; NEC-rim collapse | [29] |
14 April 2020 | Lava overflow from NEC | This work |
15 April 2020 | Lava overflow from NEC | This work |
18 January 2021 | Lava overflow from NEC | [34] |
21 January 2021 | Lava overflow from NEC | [34] |
24 January 2021 | Lava overflow from NEC | [34] |
19–24 May 2021 | Lava overflow from NEC lasting for 5 days; NEC-rim collapse; PDC | [34] |
17 June 2021 | Lava overflow from NEC | [34] |
25 June 2021 | Lava overflow from NEC | [34] |
Survey | Date | Elevation Range | Cell-Size |
---|---|---|---|
Photogrammetric PLÉIADES tri-stereo | 7/4/2020; 4/5/2021; 8/6/2021 | 0–981 m asl | 1 m |
UAV Photogrammetric Saturn-mini SAPR | 7/7/2021 | 0–700 m asl | 0.48 cm |
SAR backscattering COSMO-SkyMed | from 18/12/2020 to 30/7/2021 | 0–981 m asl | ~3 m |
Bathymetry Reson Seabat 7125 (200 kHz) | 18/2/2020 | 1–400 mwd | 1–3 m |
Bathymetry Teledyne Reson SeaBat T50-P (200 kHz) | 27/7/2021 | 5–420 mwd | 1–3 m |
Side Scan Sonar Edgetech 4125 | 27/7/2021 | 0–200 mwd | 0.35 m |
Aim of the Analysis | Investigated Parameter |
---|---|
SAR change detection | R: 18/12/2020 G: 24/3/2021 B: 24/3/2021–18/12/2020 |
R: 24/3/2021 G: 11/5/2021 B: 11/5/2021–24/3/2021 | |
R: 11/5/2021 G: 28/6/2021 B: 28/6/2021–11/5/2021 | |
Backscattering analysis | Amplitude |
Date | Type | Cell-Size (m) | RMSE0 (m) | RMSE1 (m) |
---|---|---|---|---|
7/4/2020 | PLÉIADES | 1 | 4.35 | 0.61 |
4/5/2021 | PLÉIADES | 1 | 4.81 | 1.26 |
8/6/2021 | PLÉIADES | 1 | 4.01 | 0.89 |
7/7/2021 | UAV survey | 0.048 | 1.39 | 0.90 |
Sciara Del Fuoco | Elevation Difference Map | Cell-Size (m) | σΔZ (m) |
---|---|---|---|
Subaerial slope | 4/5/2021–7/4/2020 | 1 | 1.07 |
8/6/2021–4/5/2021 | 1 | 1.03 | |
7/7/2021–8/6/2021 | 1 | 1.52 | |
7/7/2021–7/4/2020 | 1 | 1.93 | |
Submarine slope | 18/2/2020–27/7/2021 | 3 | 0.41 |
SdF | Type | Zone | Area (m2) | Volume (m3) | Av. Thick (m) | σΔZ |
---|---|---|---|---|---|---|
Subaerial slope | Erosion | SE1 | 9800 | −30,000 ± 10,000 | −3.08 | 1.07 |
SE2 | 6900 | −44,000 ± 3000 | −6.33 | 0.41 | ||
SE3 | 148,000 | −172,000 ± 153,000 | −1.16 | 1.03 | ||
Accretion | SA1 | 7100 | +25,000 ± 8000 | 3.57 | 1.07 | |
SA2 | 12,000 | +37,000 ± 13,000 | 3.14 | 1.07 | ||
SA3 | 81,000 | +325,000 ± 83,000 | 4.01 | 1.03 | ||
SA4 | 3900 | +20,000 ± 6000 | 5.17 | 1.45 | ||
SA5 | 27,000 | +50,000 ± 39,000 | 1.84 | 1.45 | ||
Submarine slope | Erosion | ME1 | 49,000 | −213,000 ± 20,000 | −4.40 | 0.41 |
ME2 | 29,000 | −68,000 ± 12,000 | −2.36 | 0.41 | ||
ME3 | 13,000 | −18,000 ± 5000 | −1.37 | 0.41 | ||
ME4 | 6900 | −13,000 ± 3000 | −1.94 | 0.41 | ||
ME5 | 7000 | −13,000 ± 3000 | −1.92 | 0.41 | ||
ME6 | 7600 | −19,000 ± 3000 | −2.44 | 0.41 | ||
Minor ME | 30,000 | −24,000 ± 12,000 | −0.81 | 0.41 | ||
Accretion | MA1 | 13,000 | +35,000 ± 5000 | 2.71 | 0.41 | |
MA2 | 43,000 | +69,000 ± 17,000 | 1.63 | 0.41 | ||
MA3 | 58,000 | +84,000 ± 24,000 | 1.45 | 0.41 | ||
MA4 | 42,000 | +115,000 ± 17,000 | 2.76 | 0.41 | ||
MA5 | 18,000 | +22,000 ± 8000 | 1.21 | 0.41 | ||
MA6 | 13,000 | +16,000 ± 5000 | 1.21 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casalbore, D.; Di Traglia, F.; Romagnoli, C.; Favalli, M.; Gracchi, T.; Tacconi Stefanelli, C.; Nolesini, T.; Rossi, G.; Del Soldato, M.; Manzella, I.; et al. Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island. Remote Sens. 2022, 14, 4605. https://doi.org/10.3390/rs14184605
Casalbore D, Di Traglia F, Romagnoli C, Favalli M, Gracchi T, Tacconi Stefanelli C, Nolesini T, Rossi G, Del Soldato M, Manzella I, et al. Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island. Remote Sensing. 2022; 14(18):4605. https://doi.org/10.3390/rs14184605
Chicago/Turabian StyleCasalbore, Daniele, Federico Di Traglia, Claudia Romagnoli, Massimiliano Favalli, Teresa Gracchi, Carlo Tacconi Stefanelli, Teresa Nolesini, Guglielmo Rossi, Matteo Del Soldato, Irene Manzella, and et al. 2022. "Integration of Remote Sensing and Offshore Geophysical Data for Monitoring the Short-Term Morphological Evolution of an Active Volcanic Flank: A Case Study from Stromboli Island" Remote Sensing 14, no. 18: 4605. https://doi.org/10.3390/rs14184605