DHCAE: Deep Hybrid Convolutional Autoencoder Approach for Robust Supervised Hyperspectral Unmixing
<p>Supervised approach of HSU using autoencoder.</p> "> Figure 2
<p>Flowchart of the proposed DHCAE Approach for robust hyperspectral unmixing (HSU).</p> "> Figure 3
<p>Five selected endmembers from the USGS library.</p> "> Figure 4
<p>Synthetic data. Ground truth (GT) map in the first column and extracted abundance maps comparison by different spectral unmixing methods.</p> "> Figure 5
<p>Robustness evaluation of the unmixing methods with various levels of band noise. (<b>a</b>) aSAM. (<b>b</b>) aRMSE.</p> "> Figure 6
<p>Robustness evaluation of the unmixing methods with various levels of pixel noise. (<b>a</b>) aSAM. (<b>b</b>) aRMSE.</p> "> Figure 7
<p>Robustness evaluation of the unmixing methods with various pixel and band noise levels. (<b>a</b>) aSAM. (<b>b</b>) aRMSE.</p> "> Figure 8
<p>Hyperspectral image of (<b>a</b>) the Jasper Ridge data set. (<b>b</b>) Band 2. (<b>c</b>) Band 3. (<b>d</b>) band 223. (<b>e</b>) Band 224.</p> "> Figure 9
<p>Jasper Ridge data. Ground truth (GT) map in the first column and extracted abundance maps without noisy bands comparison by different spectral unmixing methods.</p> "> Figure 10
<p>Jasper Ridge data. Comparison of extracted abundance maps with noisy bands by different spectral unmixing methods.</p> "> Figure 11
<p>Hyperspectral dataset. (<b>a</b>) Urban. (<b>b</b>) Band 138. (<b>c</b>) Band 149. (<b>d</b>) Band 208. (<b>e</b>) Band 209.</p> "> Figure 12
<p>Urban data. Ground truth (GT) map in the first column and extracted abundance maps with remove noisy bands comparison by different spectral unmixing methods.</p> "> Figure 13
<p>Urban data. Comparison of extracted abundance maps with noisy bands by different spectral unmixing methods.</p> "> Figure 14
<p>Washington DC Mall hyperspectral image. (<b>a</b>) Color image. (<b>b</b>) Endmembers.</p> "> Figure 15
<p>Washington DC Mall data. Ground truth (GT) map in the first column and extracted abundance maps of different spectral unmixing methods.</p> "> Figure 16
<p>Analysis of spatial window size on the proposed approach. (<b>a</b>) Jasper. (<b>b</b>) Urban. (<b>c</b>) Washington DC Mall.</p> "> Figure 17
<p>Comparison between DHCAE and other methods. (<b>a</b>) aSAM. (<b>b</b>) rRMSE.</p> ">
Abstract
:1. Introduction
- According to the best of the authors’ knowledge, this is the first time that a robust HSU model using a deep hybrid convolutional autoencoder has been proposed to build an end-to-end framework. This framework can learn discriminative features from HSI to produce better unmixing performance.
- We used 3D and 2D layer information in the proposed approach, utilizing spectral–spatial information to improve the hyperspectral unmixing performance.
- The proposed method performance is evaluated on one synthetic and three real datasets. The results confirm that the DHCAE approach outperforms existing methods.
2. Methodology
2.1. Notation and Problem Formulation
- (1)
- Encoder: The encoder part encodes the input data, into a hidden representation, (i.e., abundance) is denoted by
- (2)
- Decoder: The decoder part reconstructs the input data, from the hidden representation, (i.e., abundance) can be expressed as
2.2. Proposed DHCAE Network
3. Experiment and Analysis
3.1. Experiments on Synthetic Dataset
3.2. Experiments on Jasper Ridge Dataset
3.2.1. Results without Noisy Bands
3.2.2. Results with Noisy Bands
3.3. Experiments on Urban Dataset
3.3.1. Results with Removing Noisy Bands
3.3.2. Results Containing Noisy Bands
3.4. Experiments on Washington DC Dataset
Results on Washington DC Dataset
3.5. Parameters Setting
3.6. Effects of Spatial Window Size
3.7. Comparative Analysis
3.8. Computational Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, F.; Du, B.; Zhang, L. Scene classification via a gradient boosting random convolutional network framework. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1793–1802. [Google Scholar] [CrossRef]
- Maggiori, E.; Charpiat, G.; Tarabalka, Y.; Alliez, P. Recurrent neural networks to correct satellite image classification maps. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4962–4971. [Google Scholar] [CrossRef]
- Goodman, J.A.; Ustin, S.L. Classification of benthic composition in a coral reef environment using spectral unmixing. J. Appl. Remote Sens. 2007, 1, 011501. [Google Scholar]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2012, 101, 652–675. [Google Scholar] [CrossRef]
- Villa, A.; Chanussot, J.; Benediktsson, J.A.; Jutten, C. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE J. Sel. Top. Signal Processing 2010, 5, 521–533. [Google Scholar] [CrossRef]
- Spangler, L.H.; Dobeck, L.M.; Repasky, K.S.; Nehrir, A.R.; Humphries, S.D.; Barr, J.L. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ. Earth Sci. 2010, 60, 227–239. [Google Scholar] [CrossRef]
- Plaza, A.; Du, Q.; Bioucas-Dias, J.M.; Jia, X.; Kruse, F.A. Foreword to the special issue on spectral unmixing of remotely sensed data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4103–4110. [Google Scholar] [CrossRef]
- Ozturk, S.; Esin, Y.E.; Artan, Y. Object detection in rural areas using hyperspectral imaging. In Image and Signal Processing for Remote Sensing XXI; SPIE: Bellingham, WA, USA, 2015; Volume 9643, pp. 725–731. [Google Scholar]
- Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4173–4185. [Google Scholar] [CrossRef]
- Valero, S.; Salembier, P.; Chanussot, J. Object recognition in hyperspectral images using binary partition tree representation. Pattern Recognit. Lett. 2015, 56, 45–51. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Xu, J.; Zhu, X.X. Joint and progressive subspace analysis (JPSA) with spatial–spectral manifold alignment for semisupervised hyperspectral dimensionality reduction. IEEE Trans. Cybern. 2020, 51, 3602–3615. [Google Scholar] [CrossRef]
- Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Processing Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Chi, J.; Crawford, M.M. Spectral unmixing-based crop residue estimation using hyperspectral remote sensing data: A case study at Purdue university. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2531–2539. [Google Scholar] [CrossRef]
- Hedegaard, M.; Matthäus, C.; Hassing, S.; Krafft, C.; Diem, M.; Popp, J. Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor. Chem. Acc. 2011, 130, 1249–1260. [Google Scholar] [CrossRef]
- Boardman, J.W. Automating spectral unmixing of AVIRIS data using convex geometry concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop. Volume 1: AVIRIS Workshop, Washington, DC, USA, 25–29 October 1993. [Google Scholar]
- Winter, M.E. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data. In Imaging Spectrometry V; SPIE: Bellingham, WA, USA, 1999; Volume 3753, pp. 266–275. [Google Scholar]
- Nascimento, J.M.; Dias, J.M. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Li, J.; Agathos, A.; Zaharie, D.; Bioucas-Dias, J.M.; Plaza, A.; Li, X. Minimum volume simplex analysis: A fast algorithm for linear hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5067–5082. [Google Scholar]
- Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Chakravortty, S. DAEN: Deep autoencoder networks for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4309–4321. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, M.; Chen, J.; Rahardja, S. Nonlinear unmixing of hyperspectral data via deep autoencoder networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1467–1471. [Google Scholar] [CrossRef]
- Févotte, C.; Dobigeon, N. Nonlinear hyperspectral unmixing with robust nonnegative matrix factorization. IEEE Trans. Image Processing 2015, 24, 4810–4819. [Google Scholar] [CrossRef]
- Ozkan, S.; Kaya, B.; Akar, G.B. Endnet: Sparse autoencoder network for endmember extraction and hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2018, 57, 482–496. [Google Scholar] [CrossRef]
- Ranasinghe, Y.; Herath, S.; Weerasooriya, K.; Ekanayake, M.; Godaliyadda, R.; Ekanayake, P.; Herath, V. Convolutional autoencoder for blind hyperspectral image unmixing. In Proceedings of the 2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 26–28 November 2020; pp. 174–179. [Google Scholar]
- Rasti, B.; Koirala, B. SUnCNN: Sparse unmixing using unsupervised convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2021, 19, 5508205. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Plaza, A.; Bioucas-Dias, J. On the use of spectral libraries to perform sparse unmixing of hyperspectral data. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Zhang, X.; Sun, Y.; Zhang, J.; Wu, P.; Jiao, L. Hyperspectral unmixing via deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1755–1759. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Dobigeon, N.; Moussaoui, S.; Coulon, M.; Tourneret, J.-Y.; Hero, A.O. Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery. IEEE Trans. Signal Process. 2009, 57, 4355–4368. [Google Scholar] [CrossRef]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Collaborative sparse regression for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2013, 52, 341–354. [Google Scholar] [CrossRef]
- Pauca, V.P.; Piper, J.; Plemmons, R.J. Nonnegative matrix factorization for spectral data analysis. Linear Algebra Its Appl. 2006, 416, 29–47. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M. A variable splitting augmented Lagrangian approach to linear spectral unmixing. In Proceedings of the 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; pp. 1–4. [Google Scholar]
- Dópido, I.; Plaza, A. Unmixing prior to supervised classification of urban hyperspectral images. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 97–100. [Google Scholar]
- Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 2011, 3, 1–122. [Google Scholar]
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [Google Scholar] [CrossRef]
- Thouvenin, P.-A.; Dobigeon, N.; Tourneret, J.-Y. Hyperspectral unmixing with spectral variability using a perturbed linear mixing model. IEEE Trans. Signal Process. 2015, 64, 525–538. [Google Scholar] [CrossRef]
- Drumetz, L.; Veganzones, M.-A.; Henrot, S.; Phlypo, R.; Chanussot, J.; Jutten, C. Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability. IEEE Trans. Image Process. 2016, 25, 3890–3905. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An augmented linear mixing model to address spectral variability for hyperspectral unmixing. IEEE Trans. Image Process. 2018, 28, 1923–1938. [Google Scholar] [CrossRef]
- Wang, Q.; Wan, J.; Yuan, Y. Locality constraint distance metric learning for traffic congestion detection. Pattern Recognit. 2018, 75, 272–281. [Google Scholar] [CrossRef]
- Palsson, B.; Sigurdsson, J.; Sveinsson, J.R.; Ulfarsson, M.O. Hyperspectral unmixing using a neural network autoencoder. IEEE Access 2018, 6, 25646–25656. [Google Scholar] [CrossRef]
- Qu, Y.; Qi, H. uDAS: An untied denoising autoencoder with sparsity for spectral unmixing. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1698–1712. [Google Scholar] [CrossRef]
- Gao, L.; Han, Z.; Hong, D.; Zhang, B.; Chanussot, J. CyCU-Net: Cycle-consistency unmixing network by learning cascaded autoencoders. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5503914. [Google Scholar] [CrossRef]
- Qi, L.; Li, J.; Wang, Y.; Lei, M.; Gao, X. Deep spectral convolution network for hyperspectral image unmixing with spectral library. Signal Process. 2020, 176, 107672. [Google Scholar] [CrossRef]
- Dou, Z.; Gao, K.; Zhang, X.; Wang, H.; Wang, J. Blind hyperspectral unmixing using dual branch deep autoencoder with orthogonal sparse prior. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2428–2432. [Google Scholar]
- Sigurdsson, J.; Ulfarsson, M.O.; Sveinsson, J.R. Blind Hyperspectral Unmixing Using Total Variation and ℓp Sparse Regularization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6371–6384. [Google Scholar] [CrossRef]
- Imbiriba, T.; Borsoi, R.A.; Bermudez, J.C.M. Low-rank tensor modeling for hyperspectral unmixing accounting for spectral variability. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1833–1842. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Deng, C.; Li, J.; Wang, S.; Wang, J.; Plaza, A. Spectral-Spatial Weighted Sparse Nonnegative Tensor Factorization for Hyperspectral Unmixing. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September 2020–2 October 2020; pp. 2177–2180. [Google Scholar]
- Zeng, Y.; Ritz, C.; Zhao, J.; Lan, J. Scattering transform framework for unmixing of hyperspectral data. Remote Sens. 2019, 11, 2868. [Google Scholar] [CrossRef]
- Qu, Y.; Guo, R.; Qi, H. Spectral unmixing through part-based non-negative constraint denoising autoencoder. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 209–212. [Google Scholar]
- Su, Y.; Marinoni, A.; Li, J.; Plaza, A.; Gamba, P. Nonnegative sparse autoencoder for robust endmember extraction from remotely sensed hyperspectral images. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 205–208. [Google Scholar]
- Su, Y.; Li, J.; Plaza, A.; Marinoni, A.; Gamba, P.; Huang, Y. Deep auto-encoder network for hyperspectral image unmixing. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 6400–6403. [Google Scholar]
- Guo, R.; Wang, W.; Qi, H. Hyperspectral image unmixing using autoencoder cascade. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar]
- Su, Y.; Marinoni, A.; Li, J.; Plaza, J.; Gamba, P. Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1427–1431. [Google Scholar] [CrossRef]
- Palsson, B.; Sveinsson, J.R.; Ulfarsson, M.O. Spectral-spatial hyperspectral unmixing using multitask learning. IEEE Access 2019, 7, 148861–148872. [Google Scholar] [CrossRef]
- Palsson, B.; Ulfarsson, M.O.; Sveinsson, J.R. Convolutional autoencoder for spectral–spatial hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 59, 535–549. [Google Scholar] [CrossRef]
- Hong, D.; Chanussot, J.; Yokoya, N.; Heiden, U.; Heldens, W.; Zhu, X.X. WU-Net: A weakly-supervised unmixing network for remotely sensed hyperspectral imagery. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019; pp. 373–376. [Google Scholar]
- Li, M.; Zhu, F.; Guo, A.J. A Robust Multilinear Mixing Model with l 2, 1 norm for Unmixing Hyperspectral Images. In Proceedings of the 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), Macau, China, 1–4 December 2020; pp. 193–196. [Google Scholar]
- Zhu, F.; Halimi, A.; Honeine, P.; Chen, B.; Zheng, N. Correntropy maximization via ADMM: Application to robust hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4944–4955. [Google Scholar] [CrossRef]
- Heinz, D.C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, L.; Lin, C.-H.; Figueiredo, M.A.; Bioucas-Dias, J.M. Regularization parameter selection in minimum volume hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9858–9877. [Google Scholar] [CrossRef]
- Rasti, B.; Koirala, B.; Scheunders, P.; Ghamisi, P. UnDIP: Hyperspectral unmixing using deep image prior. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5504615. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S.K.; Koirala, B.; Rasti, B.; Scheunders, P. Deep hyperspectral unmixing using transformer network. arXiv 2022, arXiv:2203.17076. [Google Scholar]
- Khajehrayeni, F.; Ghassemian, H. Hyperspectral unmixing using deep convolutional autoencoders in a supervised scenario. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 567–576. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library Splib06a; 2327-638X; US Geological Survey: Reston, VA, USA, 2007.
- Huang, R.; Li, X.; Zhao, L. Spectral–spatial robust nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8235–8254. [Google Scholar] [CrossRef]
- Li, X.; Huang, R.; Zhao, L. Correntropy-based spatial-spectral robust sparsity-regularized hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1453–1471. [Google Scholar] [CrossRef]
- Rasti, B.; Koirala, B.; Scheunders, P.; Chanussot, J. Misicnet: Minimum simplex convolutional network for deep hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522815. [Google Scholar] [CrossRef]
Layers | Output Shape | Activation | # Parameters |
---|---|---|---|
Input_1 (Input Layer) | (15, 15, 198, 1) | - | 0 |
3D_C1 (Conv3D) | (13, 13, 190, 8) | ReLU | 656 |
3D_C2 (Conv3D) | (11, 11, 184, 16) | ReLU | 8080 |
3D_C3 (Conv3D) | (9, 9, 180, 32) | ReLU | 23,072 |
Reshape_1 (Reshape) | (9, 9, 5760) | - | 0 |
2D_C4 (Conv2D) | (7, 7, 64) | ReLU | 3,317,824 |
2D_C5 (Conv2D) | (5, 5, 128) | ReLU | 73,856 |
flatten_1 (Flatten) | (3200) | - | 0 |
F6 (Dense) | (128) | - | 409,728 |
dropout_1 (Dropout) | (128) | - | 0 |
F7 (Dense) | (P) | ReLU + Softmax | 516 |
O8 (Dense) | (L) | - | 792 |
Total Trainable Parameters: 3,834,524 |
Algorithm | FCLS | ALMM | NMF-QMV | UnDIP | DHTN | DCAE | DHCAE |
---|---|---|---|---|---|---|---|
rRMSE | 0.0216 | 0.0515 | 0.0157 | 0.0136 | 0.0143 | 0.0124 | 0.0068 |
aSAM | 0.0816 | 0.3378 | 0.0623 | 0.0497 | 0.0514 | 0.0508 | 0.0314 |
Algorithm | FCLS | ALMM | NMF-QMV | UnDIP | DHTN | DCAE | DHCAE |
---|---|---|---|---|---|---|---|
rRMSE | 0.0752 | 0.0945 | 0.0663 | 0.0523 | 0.0529 | 0.0496 | 0.0415 |
aSAM | 0.2267 | 0.5116 | 0.1528 | 0.1102 | 0.1127 | 0.1083 | 0.0706 |
Algorithm | FCLS | ALMM | NMF-QMV | UnDIP | DHTN | DCAE | DHCAE |
---|---|---|---|---|---|---|---|
rRMSE | 0.0528 | 0.0484 | 0.0318 | 0.0286 | 0.0276 | 0.0249 | 0.0115 |
aSAM | 0.1512 | 0.2602 | 0.0927 | 0.0603 | 0.0627 | 0.0525 | 0.0331 |
Algorithm | FCLS | ALMM | NMF-QMV | UnDIP | DHTN | DCAE | DHCAE |
---|---|---|---|---|---|---|---|
rRMSE | 0.1275 | 0.0987 | 0.0859 | 0.0738 | 0.0723 | 0.0698 | 0.0609 |
aSAM | 0.4528 | 0.3181 | 0.1624 | 0.1005 | 0.997 | 0.0981 | 0.0942 |
Algorithm | FCLS | ALMM | NMF-QMV | UnDIP | DHTN | DCAE | DHCAE |
---|---|---|---|---|---|---|---|
rRMSE | 0.0713 | 0.0548 | 0.0523 | 0.0474 | 0.0452 | 0.0426 | 0.0357 |
aSAM | 0.1773 | 0.0967 | 0.0895 | 0.0832 | 0.0786 | 0.0759 | 0.0623 |
Algorithm | Computational Time (in Seconds) | |||
---|---|---|---|---|
Synthetic | Jasper | Urban | Washington DC | |
FCLS | 905 | 240 | 516 | 401 |
ALMM | 1410 | 221 | 1312 | 768 |
UnDIP | 1386 | 475 | 1253 | 863 |
DHTN | 1347 | 452 | 1231 | 845 |
DCAE | 1330 | 427 | 1210 | 824 |
DHCAE | 1270 | 312 | 1037 | 693 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, F.; Yang, J.; Ullah, M.; Ahmad, I.; Farooque, G.; Xiao, L. DHCAE: Deep Hybrid Convolutional Autoencoder Approach for Robust Supervised Hyperspectral Unmixing. Remote Sens. 2022, 14, 4433. https://doi.org/10.3390/rs14184433
Hadi F, Yang J, Ullah M, Ahmad I, Farooque G, Xiao L. DHCAE: Deep Hybrid Convolutional Autoencoder Approach for Robust Supervised Hyperspectral Unmixing. Remote Sensing. 2022; 14(18):4433. https://doi.org/10.3390/rs14184433
Chicago/Turabian StyleHadi, Fazal, Jingxiang Yang, Matee Ullah, Irfan Ahmad, Ghulam Farooque, and Liang Xiao. 2022. "DHCAE: Deep Hybrid Convolutional Autoencoder Approach for Robust Supervised Hyperspectral Unmixing" Remote Sensing 14, no. 18: 4433. https://doi.org/10.3390/rs14184433