Sea Level Rise Estimation on the Pacific Coast from Southern California to Vancouver Island
"> Figure 1
<p>Spatial distribution over the entire west coast of North America showing the 405 GNSS stations and 31 TG sites used in this study. Note that <a href="#remotesensing-14-04339-f0A1" class="html-fig">Figure A1</a> (in the <a href="#app1-remotesensing-14-04339" class="html-app">Appendix A</a>) displays the western coast in more detail (the black lines are fault boundaries).</p> "> Figure 2
<p>Histogram of the percentage of data gaps for all GNSS time series analyzed in this study.</p> "> Figure 3
<p>Up component of the GNSS daily position time series for the SEAT station with functional model on top (red line) of the observations.</p> "> Figure 4
<p>Coastal latitudinal profile of VLM for British Columbia [BC] (Vancouver Island, Canada) and Washington State [WA] (inland Puget Sound, USA) based on the PANGA solution (with the BIC_tp information criterion). The stars are the location of the TGs. The red is the uncertainty associated with the VLM estimates, the green lines are the mean values of the VLM for each region.</p> "> Figure 5
<p>VLM estimated for each region (Vancouver Island (Canada), Salish Sea + Inland Puget S. (USA), Olympic Peninsula (USA), South WA (USA) + Oregon plains (USA), Cape Blanco Triple junction + Point Arena (USA), Southern California (USA), whole Pacific coast). The VLM is estimated using either the PANGA or the NMT solution. Note that we have also included the results using the various ICs (AIC, BIC, BIC_tp).</p> "> Figure 6
<p>Coastal profile of the vertical land motion for British Columbia [BC] (Vancouver Island, Canada), Washington state [WA] (Olympic Peninsula, south of WA, USA), Oregon [OR] plains (USA), California [CA] (north and south, USA). The stars are the location of the TG. The red is the uncertainty associated with the VLM estimates. The green lines are the mean values of the vertical land motion.</p> "> Figure 7
<p>Interpolation of the VLM uncertainties for both NMT and PANGA products based on BIC_tp (the fault zone/line is in red).</p> "> Figure 8
<p>Relative Sea Level Rise Rate and associated uncertainties estimated at various TGs along the Pacific coast from Vancouver Island (Canada) to Southern California (USA) using different stochastic noise models. The abbreviations of the TG names refer to <a href="#remotesensing-14-04339-t001" class="html-table">Table 1</a> and <a href="#remotesensing-14-04339-f001" class="html-fig">Figure 1</a>.</p> "> Figure 9
<p>Sea Level Rise Rate (blue) and ASLR (red) for the TG stations in the Pacific coast. Note that the RSLR is produced using the BIC_tp. The VLM estimates used to process the ASLR are based on the BIC_tp and the GGM model. Here, only the results with the PANGA solution are displayed. The flooding risk is added (center to 0 mm/yr) as the vertical bar from low (blue) to high (yellow). The grey line is the GIA estimated from an ensemble of models.</p> "> Figure 10
<p>Histogram of the absolute SLR for the various regions along the Pacific coast from Vancouver Island (Canada) to Southern California (USA).</p> "> Figure 11
<p>Absolute Sea Level Rise Rate and the mean sea level with satellite altimetry (SSH) estimated at the same location as the TG of PANGA solution.</p> "> Figure A1
<p>Zoom of <a href="#remotesensing-14-04339-f001" class="html-fig">Figure 1</a>.</p> "> Figure A2
<p>Absolute SLR (ASLR) estimated using TG and VLM (NMT) and the satellite altimetry mean sea level (SSH) estimated at the same location of the TG.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing
2.2. Stochastic and Functional Model Estimation
3. Results
3.1. Overview of the Tectonics of the Pacific Coast and Coastal Uplift Profile
3.2. Vancouver Island, the Olympic Peninsula, and Puget Sound
3.3. South of Washington State and Oregon
3.4. Cape Blanco–Cape Mendocino and Point Arena in Northern California
3.5. Central and Southern California
4. Discussion
4.1. RSLR and ASLR Estimation along the Pacific Coast
4.2. Absolute SLR along the Pacific Coast of the USA Using SSH and Corrected TG Measurements
5. Conclusions
- (1)
- For the 405 analyzed GNSS daily position time series, the PL+WN model still appears to be the best noise model, i.e., about 81.0% and 61.0% of the PANGA and NMT solutions. The GGM+WN accounts for about 14.0% and 34.0% of the PANGA and NMT, respectively. Overall, the values for the NMT product are noisier than the PANGA solution, which is consistent with [40,41]. Besides, the stochastic properties of VLM estimates are not varying using the various ICs for about 98.0% of the stations for both the PANGA and NMT solutions.
- (2)
- The Cascadia forearc is divided into three areas: Vancouver Island, the Olympic Peninsula, and Puget Sound, among them the Cascadia subduction zone generates a large uplift rate observed on the northern part of Vancouver Island and the Olympic Peninsula with an order of magnitude about 2.0 mm/yr on average, which is caused by the combination of the postglacial rebound and the subduction interseismic strain, whereas the inland Puget Sound is characterized by small positive or negative values VLM values. This result supports previous studies (e.g., Mazzotti et al., 2007; Montillet et al., 2018) that the VLM values around Vancouver Island are gradually increasing from the Olympic Peninsula [1,24]. We also underline that some stations do not experience as much uplift as reported in the previous work of Montillet et al., (2018) [24]. These discrepancies are due to the specific modeling of the geophysical signals (e.g., the ETS events) and the optimum stochastic noise model selection. In addition, the new profile confirms the large variability of VLM estimates in the Pacific Northwest around the Cascadia subduction zone in agreement with previous studies.
- (3)
- The VLM decreases towards the south of WA and the Oregon region. We also conclude that the PANGA and NMT processing are comparable in terms of variance for all regions of the Pacific coast. From Cape Blanco down to Cape Mendocino the VLM increases progressively, which is due to the geophysical activities at the Mendocino triple junction. For Central and Southern California, the NMT product for the whole Southern California region provides comparable values estimated for Vancouver Island and the Olympic Peninsula combined.
- (4)
- We estimate the RSLR and ASLR along the Pacific coast. The negative RSLR values are mostly located in the Pacific Northwest—Vancouver Island and the Olympic Peninsula—with stations such as Campbell River (Camp).
- (5)
- We observe a much bigger variation (about 90.0–150.0%) of the ASLR in the Pacific Northwest which is predominantly due to the GIA. Moreover, we compared the estimation of the ASLR with the SSH. The SLR estimated with the SSH product are all positive values across the entire coast. This result is expected because the satellite altimetry is not affected by the underlying geodynamical movements due to the VLM affecting the TG measurements. They are comparable for the center of the coast (Southern WA, Oregon planes, and some parts of Southern California) where the tectonic activity does not influence the TG measurements. However, the discrepancy between the SLR and the SSH is still discussed within the scientific community due to many factors such as the underlying geodynamics and ocean eddies. Our analysis also emphasizes the need to carefully chose the GNSS product that can introduce different variations of the VLM and then influences the estimated ASLR.
- (6)
- Finally, we compare our various estimates with the twentieth-century satellite geocentric ocean height rates, which are between 1.5 and 1.9 mm/yr. Our estimates with the PANGA and SSH are consistent with the previous studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Site | This Work | Montillet et al. 2018 [24] | Mazzotti et al. 2007 [1] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
PANGA | NMT | PANGA | NMT | |||||||
u | Sigma | u | Sigma | u | Sigma | u | Sigma | u | Sigma | |
ALBH | 1.2 | 0.1 | 0.3 | 0.1 | 0.7 | 0.2 | 0.8 | 0.3 | 1.1 | 0.9 |
DRAO | 0.4 | 0.2 | −0.1 | 0.2 | 1.0 | 0.2 | 1.2 | 0.3 | 1.2 | 0.7 |
NANO | 1.7 | 0.5 | 1.7 | 0.6 | 2.2 | 0.3 | 1.8 | 0.4 | 2.5 | 0.9 |
NEAH | 3.4 | 0.1 | 2.2 | 0.1 | 3.2 | 0.2 | 3.2 | 0.3 | 3.5 | 1.0 |
PGC5 | 1.0 | 0.2 | 0.4 | 0.1 | 0.8 | 0.2 | 0.1 | 0.5 | 1.8 | 1.0 |
SEAT | 0.5 | 0.7 | −1.4 | 0.8 | 0.1 | 0.3 | −0.2 | 0.3 | −0.6 | 0.9 |
UCLU | 1.8 | 1.0 | −0.7 | 1.1 | 2.5 | 0.2 | 1.9 | 0.3 | 2.7 | 0.9 |
BAMF | 2.1 | 0. 4 | 1.9 | 0.8 | 2.7 | 0.4 | 1.8 | 0.4 | ||
BCOV | 2.7 | 0.2 | 1.8 | 0.3 | 2.8 | 0.2 | 3.6 | 0.7 | ||
CABL | 1.5 | 0.1 | 0.8 | 0.2 | 1.2 | 0.2 | 1.4 | 0.2 | ||
CHZZ | −0.2 | 0.3 | −0.8 | 0.4 | 0.2 | 0.4 | 0.8 | 0.2 | ||
ELIZ | 2.8 | 0.2 | 1.7 | 0.1 | 2.5 | 0.2 | 2.6 | 0.4 | ||
HOLB | 1.9 | 0.2 | 1.3 | 0.2 | 2.4 | 0.2 | 0.9 | 1.0 | ||
KTBW | −0.1 | 0.3 | −1.0 | 0.5 | −0.5 | 0.2 | −0.4 | 0.3 | ||
NTKA | 2.7 | 0.2 | 2.0 | 0.3 | 3.6 | 0.2 | 4.3 | 0.4 | ||
P159 | −1.2 | 0.4 | −1.7 | 0.6 | −0.8 | 0.3 | −1.6 | 0.3 | ||
P161 | −1.5 | 0.5 | −2.1 | 0.8 | −1.0 | 0.2 | −1.5 | 0.3 | ||
P162 | −1.6 | 0.8 | −2.2 | 0.7 | −1.2 | 0.2 | −1.6 | 0.3 | ||
P316 | −2.1 | 0.8 | −2.3 | 0.7 | −2.2 | 0.5 | −2.1 | 0.6 | ||
P362 | 2.0 | 0.3 | 1.6 | 0.3 | 2.8 | 0.3 | 2.1 | 0.4 | ||
P364 | 1.9 | 0.2 | 1.2 | 0.2 | 2.3 | 0.3 | 1.7 | 0.4 | ||
P365 | 0.5 | 0.2 | −0.1 | 0.2 | 1.0 | 0.3 | 0.0 | 0.4 | ||
P366 | 0.4 | 0.2 | −0.7 | 0.2 | 0.7 | 0.3 | −0.6 | 0.3 | ||
P367 | −0.3 | 0.3 | −1.1 | 0.2 | −0.2 | 0.3 | −0.8 | 0.4 | ||
P395 | 0.6 | 0.4 | 0.2 | 0.7 | 0.2 | 0.4 | −0.2 | 0.3 | ||
P396 | 0.8 | 0.2 | −0.2 | 0.4 | 1.1 | 0.5 | 0.2 | 0.4 | ||
P398 | 0.7 | 0.4 | −0.1 | 0.1 | 1.5 | 0.3 | 0.6 | 0.4 | ||
P402 | 2.1 | 0.2 | 1.4 | 0.2 | 2.5 | 0.2 | 1.7 | 0.5 | ||
P423 | −0.2 | 0.4 | −0.8 | 0.2 | −0.4 | 0.2 | −0.9 | 0.3 | ||
P435 | −0.2 | 0.3 | −0.6 | 0.3 | 0.6 | 0.4 | 0.1 | 0.4 | ||
P437 | 0.6 | 0.8 | −1.4 | 0.8 | −0.4 | 0.3 | −1.4 | 0.7 | ||
P439 | 1.0 | 0.6 | −0.6 | 0.7 | 0.0 | 0.2 | −0.3 | 0.4 | ||
P734 | 2.4 | 0.4 | 1.7 | 0.5 | 3.2 | 0.3 | 2.0 | 0.4 | ||
PABH | 0.5 | 0.2 | −0.3 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 | ||
PCOL | −0.0 | 0.9 | −2.4 | 0.9 | −0.6 | 0.3 | −0.6 | 0.3 | ||
PTAL | 3.5 | 0.3 | 2.5 | 0.1 | 3.5 | 0.1 | 0.0 | 0.6 | ||
PTSG | 2.9 | 0.3 | 2.0 | 0.5 | 3.6 | 0.2 | 3.0 | 0.3 | ||
QUAD | 4.2 | 0.5 | 3.5 | 0.2 | 4.3 | 0.4 | 3.9 | 0.4 | ||
SC04 | 1.4 | 0.2 | 0.7 | 0.3 | 1.2 | 0.2 | 1.0 | 0.2 | ||
TPW2 | 0.5 | 0.1 | −0.3 | 0.1 | 0.2 | 0.2 | 0.5 | 0.2 | ||
TRND | −1.0 | 0.6 | −1.2 | 0.9 | −0.9 | 0.3 | −0.7 | 0.3 |
Solution | Site | AIC | BIC | BIC_tp |
---|---|---|---|---|
PANGA | CHWK | GGMWN | PLWN | PLWN |
MIDA | PLWN | FNWN | FNWN | |
P283 | PLWN | FNWN | FNWN | |
P315 | PLWN | FNWN | FNWN | |
P316 | PLWN | FNWN | FNWN | |
SHLD | GGMWN | PLWN | PLWN | |
KTBW | GGMWN | PLWN | PLWN | |
NMT | P156 | PLWN | FNWN | FNWN |
P178 | PLWN | FNWN | FNWN | |
P188 | PLWN | FNWN | FNWN | |
P267 | PLWN | FNWN | FNWN | |
P273 | PLWN | FNWN | FNWN | |
P312 | PLWN | FNWN | FNWN | |
PVRS | PLWN | FNWN | FNWN | |
KTBW | GGMWN | PLWN | PLWN |
RSLR TG | GGM | ARFIMA BIC_tp | ARMA BIC_tp | ARFIMA BIC | ARMA BIC | ARFIMA AIC | ARMA AIC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | |
0010 | 1.5 | 0.1 | 1.5 | 0.2 | 1.5 | 0.1 | 1.5 | 0.2 | 1.5 | 0.1 | 1.5 | 0.2 | 1.5 | 0.1 |
0127 | 2.1 | 0.1 | 2.1 | 0.2 | 2.1 | 0.1 | 2.1 | 0.2 | 2.1 | 0.1 | 2.1 | 0.2 | 2.1 | 0.1 |
0158 | 2.3 | 0.2 | 2.2 | 0.1 | 2.3 | 0.1 | 2.2 | 0.1 | 2.3 | 0.1 | 2.2 | 0.1 | 2.3 | 0.1 |
0165 | −1.4 | 0.3 | −1.3 | 0.2 | −1.4 | 0.3 | −1.3 | 0.2 | −1.4 | 0.3 | −1.3 | 0.2 | −1.4 | 0.3 |
0166 | 0.8 | 0.1 | 0.8 | 0.1 | 0.8 | 0.1 | 0.8 | 0.1 | 0.8 | 0.1 | 0.8 | 0.1 | 0.8 | 0.1 |
0245 | 1.1 | 0.2 | 1.1 | 0.1 | 1.1 | 0.2 | 1.1 | 0.1 | 1.1 | 0.2 | 1.1 | 0.1 | 1.1 | 0.2 |
0256 | 2.2 | 0.2 | 2.1 | 0.1 | 2.1 | 0.1 | 2.1 | 0.1 | 2.1 | 0.1 | 2.1 | 0.1 | 2.1 | 0.1 |
0265 | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 | −0.2 | 0.2 |
0377 | 1.8 | 0.2 | 1.8 | 0.2 | 1.8 | 0.2 | 1.8 | 0.2 | 1.8 | 0.2 | 1.8 | 0.2 | 1.8 | 0.2 |
0378 | −0.8 | 0.2 | −0.8 | 0.1 | −0.8 | 0.2 | −0.8 | 0.2 | −0.8 | 0.2 | −0.8 | 0.1 | −0.8 | 0.2 |
0384 | 1.2 | 0.2 | 1.2 | 0.1 | 1.2 | 0.2 | 1.2 | 0.1 | 1.2 | 0.2 | 1.2 | 0.1 | 1.2 | 0.2 |
0385 | −1.8 | 0.2 | −1.8 | 0.1 | −1.8 | 0.2 | −1.8 | 0.1 | −1.8 | 0.2 | −1.8 | 0.1 | −1.8 | 0.2 |
0437 | 0.9 | 0.2 | 0.9 | 0.2 | 0.9 | 0.2 | 0.9 | 0.2 | 0.9 | 0.2 | 0.9 | 0.2 | 0.9 | 0.2 |
0508 | 1.0 | 0.3 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 | 1.0 | 0.2 |
0527 | −0.6 | 1.3 | −0.7 | 1.6 | −0.6 | 1.0 | −0.7 | 1.6 | −0.6 | 1.0 | −0.7 | 1.6 | −0.6 | 1.0 |
1152 | 0.9 | 0.7 | 1.0 | 1.0 | 0.9 | 0.7 | 1.0 | 1.0 | 0.9 | 0.7 | 0.7 | 0.4 | 0.9 | 0.7 |
1196 | 1.7 | 0.4 | 1.7 | 0.6 | 1.7 | 0.5 | 1.7 | 0.6 | 1.7 | 0.5 | 1.8 | 0.3 | 1.7 | 0.5 |
1242 | 0.0 | 0.4 | 0.0 | 0.4 | 0.0 | 0.5 | 0.0 | 0.4 | 0.0 | 0.5 | 0.0 | 0.4 | 0.0 | 0.5 |
1269 | 1.1 | 0.5 | 1.0 | 0.4 | 1.1 | 0.5 | 1.0 | 0.4 | 1.1 | 0.5 | 1.0 | 0.4 | 1.1 | 0.5 |
1323 | −1.8 | 0.5 | −1.8 | 0.4 | −1.8 | 0.5 | −1.8 | 0.4 | −1.8 | 0.5 | −1.8 | 0.4 | −1.8 | 0.5 |
1325 | 1.8 | 0.5 | 1.8 | 0.4 | 1.7 | 0.5 | 1.8 | 0.4 | 1.7 | 0.5 | 1.8 | 0.4 | 1.7 | 0.5 |
1352 | 1.6 | 0.5 | 1.5 | 0.4 | 1.6 | 0.5 | 1.5 | 0.4 | 1.6 | 0.5 | 1.5 | 0.4 | 1.6 | 0.5 |
1354 | 0.2 | 0.9 | 0.1 | 0.4 | 0.2 | 0.9 | 0.1 | 0.4 | 0.2 | 0.9 | 0.1 | 0.4 | 0.2 | 0.9 |
1394 | 2.2 | 0.5 | 2.2 | 0.5 | 2.2 | 0.5 | 2.2 | 0.5 | 2.2 | 0.5 | 2.2 | 0.5 | 2.2 | 0.5 |
1639 | 5.6 | 0.8 | 5.7 | 1.2 | 5.6 | 0.7 | 5.7 | 1.2 | 5.6 | 0.7 | 5.7 | 1.2 | 5.6 | 0.7 |
1640 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 |
1799 | −0.1 | 0.9 | −0.2 | 0.5 | −0.1 | 0.9 | −0.2 | 0.5 | −0.1 | 0.9 | −0.2 | 0.4 | −0.1 | 1.0 |
2125 | 1.1 | 0.8 | 1.2 | 1.1 | 1.1 | 0.7 | 1.2 | 1.1 | 1.1 | 0.7 | 1.2 | 1.1 | 1.1 | 0.7 |
2126 | 2.3 | 1.1 | 2.2 | 0.7 | 2.3 | 1.0 | 2.2 | 0.7 | 2.3 | 1.0 | 2.2 | 0.7 | 2.3 | 1.0 |
2127 | 0.4 | 0.5 | 0.4 | 0.7 | 0.3 | 0.4 | 0.4 | 0.7 | 0.3 | 0.4 | 0.4 | 0.7 | 0.4 | 0.5 |
2330 | 2.0 | 0.7 | 2.2 | 1.1 | 2.0 | 0.7 | 2.2 | 1.1 | 2.0 | 0.7 | 2.2 | 1.1 | 2.0 | 0.7 |
RSLR SSH | GGM | ARFIMA BIC_tp | ARMA BIC_tp | ARFIMA BIC | ARMA BIC | ARFIMA AIC | ARMA AIC | |||||||
Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | |
0010 | 1.3 | 0.3 | 0.9 | 1.6 | 1.2 | 0.8 | 0.9 | 1.6 | 1.2 | 0.8 | 0.9 | 1.7 | 1.2 | 0.8 |
0127 | 1.2 | 0.4 | 1.2 | 1.2 | 1.2 | 0.7 | 1.2 | 1.2 | 1.2 | 0.7 | 1.2 | 1.1 | 1.2 | 0.8 |
0158 | 2.0 | 0.4 | 1.6 | 2.0 | 1.9 | 0.7 | 1.6 | 2.0 | 1.9 | 0.7 | 1.6 | 1.9 | 1.9 | 0.7 |
0165 | 0.7 | 0.4 | 0.7 | 2.1 | 0.8 | 0.9 | 0.7 | 2.1 | 0.8 | 0.9 | 0.7 | 1.4 | 0.8 | 0.9 |
0166 | 1.0 | 0.4 | 1.0 | 1.8 | 1.0 | 0.8 | 1.0 | 1.8 | 1.0 | 0.8 | 1.0 | 1.6 | 1.0 | 0.8 |
0245 | 1.4 | 0.9 | 1.5 | 1.6 | 1.8 | 0.7 | 1.5 | 1.6 | 1.8 | 0.7 | 1.5 | 1.7 | 1.8 | 0.7 |
0256 | 1.9 | 0.4 | 1.5 | 1.8 | 1.8 | 0.7 | 1.5 | 1.8 | 1.8 | 0.7 | 1.5 | 1.8 | 1.8 | 0.7 |
0265 | 0.7 | 0.4 | 0.6 | 1.1 | 0.7 | 0.9 | 0.6 | 1.1 | 0.7 | 0.9 | 0.6 | 1.1 | 0.7 | 0.9 |
0377 | 1.4 | 0.9 | 1.5 | 1.7 | 1.9 | 0.5 | 1.5 | 1.7 | 1.9 | 0.6 | 1.5 | 1.7 | 1.9 | 0.6 |
0378 | 0.8 | 0.4 | 0.5 | 1.5 | 0.8 | 0.6 | 0.5 | 1.5 | 0.8 | 0.8 | 0.6 | 1.3 | 0.8 | 0.6 |
0384 | 1.0 | 0.4 | 1.0 | 1.1 | 1.0 | 0.5 | 1.0 | 1.1 | 1.0 | 0.5 | 1.0 | 1.2 | 1.1 | 0.7 |
0385 | 1.0 | 0.4 | 1.0 | 1.2 | 1.0 | 0.8 | 1.0 | 1.4 | 1.0 | 0.8 | 1.0 | 1.2 | 1.0 | 0.8 |
0437 | 1.3 | 0.3 | 0.9 | 1.6 | 1.2 | 0.8 | 0.9 | 1.6 | 1.2 | 0.8 | 0.9 | 1.6 | 1.2 | 0.8 |
0508 | 1.8 | 0.4 | 1.4 | 1.5 | 1.8 | 0.6 | 1.4 | 1.5 | 1.8 | 0.6 | 1.4 | 1.5 | 1.8 | 0.5 |
0527 | 0.9 | 0.4 | 1.0 | 2.3 | 1.0 | 0.9 | 1.0 | 2.3 | 1.0 | 0.9 | 0.9 | 1.4 | 1.0 | 0.9 |
1152 | 1.0 | 0.4 | 1.0 | 1.4 | 1.0 | 0.8 | 1.0 | 1.4 | 1.0 | 0.8 | 1.0 | 1.7 | 1.0 | 0.8 |
1196 | 0.7 | 0.3 | 0.6 | 1.3 | 0.7 | 0.8 | 0.6 | 1.3 | 0.7 | 0.8 | 0.6 | 1.3 | 0.7 | 0.8 |
1242 | 0.9 | 0.3 | 0.9 | 1.9 | 0.9 | 0.8 | 0.9 | 1.9 | 0.9 | 0.8 | 0.8 | 1.4 | 0.9 | 0.9 |
1269 | 0.8 | 0.4 | 0.6 | 1.4 | 0.8 | 0.8 | 0.6 | 1.4 | 0.8 | 0.8 | 0.6 | 1.4 | 0.8 | 0.8 |
1323 | 0.8 | 0.4 | 0.9 | 2.3 | 0.9 | 0.8 | 0.9 | 2.2 | 0.9 | 0.7 | 0.9 | 2.3 | 0.9 | 0.8 |
1325 | 1.2 | 0.4 | 1.2 | 1.2 | 1.2 | 0.7 | 1.2 | 1.2 | 1.2 | 0.7 | 1.2 | 1.1 | 1.2 | 0.8 |
1352 | 1.5 | 0.4 | 1.2 | 1.4 | 1.5 | 0.5 | 1.2 | 1.4 | 1.5 | 0.5 | 1.2 | 1.4 | 1.5 | 0.5 |
1354 | 0.7 | 0.4 | 0.6 | 1.1 | 0.7 | 0.9 | 0.6 | 1.1 | 0.7 | 0.9 | 0.6 | 1.2 | 0.7 | 0.9 |
1394 | 1.3 | 0.3 | 0.8 | 1.6 | 1.2 | 0.7 | 0.8 | 1.6 | 1.2 | 0.7 | 0.8 | 1.6 | 1.2 | 0.7 |
1639 | 0.9 | 0.3 | 0.6 | 1.5 | 0.8 | 0.8 | 0.6 | 1.5 | 0.8 | 0.8 | 0.6 | 1.5 | 0.8 | 0.8 |
1640 | 0.8 | 0.4 | 0.6 | 1.4 | 0.8 | 0.8 | 0.6 | 1.4 | 0.8 | 0.8 | 0.6 | 1.3 | 0.8 | 0.7 |
1799 | 0.5 | 0.4 | 0.4 | 1.5 | 0.5 | 0.9 | 0.4 | 1.5 | 0.5 | 0.9 | 0.4 | 1.5 | 0.5 | 0.9 |
2125 | 1.2 | 0.3 | 0.8 | 1.3 | 1.1 | 0.5 | 0.8 | 1.3 | 1.1 | 0.5 | 0.7 | 1.5 | 1.1 | 0.5 |
2126 | 1.9 | 0.4 | 1.6 | 1.5 | 1.9 | 0.6 | 1.6 | 1.5 | 1.9 | 0.6 | 1.6 | 1.5 | 1.9 | 0.6 |
2127 | 1.3 | 1.8 | 1.2 | 1.3 | 1.2 | 0.8 | 1.2 | 1.3 | 1.2 | 0.8 | 1.2 | 1.2 | 1.2 | 0.8 |
2330 | 0.6 | 1.8 | 0.7 | 2.0 | 1.1 | 0.8 | 0.7 | 2.0 | 1.1 | 0.8 | 0.8 | 1.6 | 1.1 | 0.8 |
TG Site | GGM | ARFIMA BIC_tp | ARMA BIC_tp | |||
---|---|---|---|---|---|---|
Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | |
0010 | 0.1 | 0.5 | 0.1 | 0.5 | 0.1 | 0.5 |
0127 | 2.5 | 0.7 | 2.4 | 0.7 | 2.5 | 0.7 |
0158 | 1.3 | 0.3 | 1.3 | 0.3 | 1.3 | 0.3 |
0165 | 0.9 | 0.8 | 0.9 | 0.7 | 0.9 | 0.8 |
0166 | 3.6 | 0.6 | 3.6 | 0.6 | 3.6 | 0.6 |
0245 | 1.3 | 0.3 | 1.3 | 0.3 | 1.3 | 0.3 |
0256 | 1.3 | 0.3 | 1.3 | 0.3 | 1.3 | 0.3 |
0265 | 0.5 | 0.3 | 0.5 | 0.3 | 0.5 | 0.3 |
0377 | 3.1 | 0.6 | 3.1 | 0.6 | 3.1 | 0.6 |
0378 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | 0.5 |
0384 | 2.1 | 0.6 | 2.1 | 0.6 | 2.1 | 0.6 |
0385 | −0.7 | 1.2 | −0.7 | 1.2 | −0.7 | 1.2 |
0437 | −0.3 | 0.5 | −0.2 | 0.5 | −0.3 | 0.5 |
0508 | 2.8 | 0.5 | 2.8 | 0.5 | 2.8 | 0.5 |
0527 | 2.6 | 1.4 | 2.5 | 1.6 | 2.6 | 1.0 |
1152 | 3.7 | 0.8 | 3.9 | 1.1 | 3.7 | 0.8 |
1196 | 1.6 | 0.6 | 1.5 | 0.7 | 1.6 | 0.6 |
1242 | 2.3 | 0.6 | 2.2 | 0.6 | 2.3 | 0.6 |
1269 | 2.0 | 0.5 | 2.0 | 0.4 | 2.0 | 0.5 |
1323 | 2.2 | 0.7 | 2.2 | 0.6 | 2.2 | 0.7 |
1325 | 2.4 | 0.7 | 2.4 | 0.7 | 2.4 | 0.7 |
1352 | 1.3 | 0.7 | 1.1 | 0.6 | 1.3 | 0.6 |
1354 | 1.0 | 0.9 | 0.9 | 0.5 | 1.0 | 0.9 |
1394 | 1.5 | 0.6 | 1.5 | 0.6 | 1.5 | 0.6 |
1639 | 4.4 | 1.1 | 4.5 | 1.4 | 4.3 | 1.0 |
1640 | 2.6 | 1.0 | 2.6 | 0.9 | 2.6 | 1.0 |
1799 | 1.7 | 1.0 | 1.7 | 0.6 | 1.7 | 0.9 |
2125 | 0.2 | 0.8 | 0.3 | 1.1 | 0.3 | 0.8 |
2126 | 3.7 | 1.1 | 3.6 | 0.8 | 3.7 | 1.0 |
2127 | 0.9 | 0.6 | 0.9 | 0.8 | 0.8 | 0.5 |
2330 | 1.3 | 0.8 | 1.5 | 1.2 | 1.3 | 0.8 |
TG Site | GGM | ARFIMA BIC_tp | ARMA BIC_tp | |||
---|---|---|---|---|---|---|
Velocity | Sigma | Velocity | Sigma | Velocity | Sigma | |
0010 | −0.6 | 0.7 | −0.6 | 0.7 | −0.6 | 0.7 |
0127 | 0.7 | 0.8 | 0.7 | 0.8 | 0.7 | 0.8 |
0158 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
0165 | −1.0 | 0.8 | −1.0 | 0.8 | −1.0 | 0.8 |
0166 | 1.4 | 0.7 | 1.4 | 0.7 | 1.4 | 0.7 |
0245 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
0256 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
0265 | −0.3 | 0.3 | −0.3 | 0.3 | −0.3 | 0.3 |
0377 | 2.0 | 0.6 | 2.0 | 0.6 | 2.0 | 0.6 |
0378 | −0.2 | 0.6 | −0.2 | 0.6 | −0.2 | 0.6 |
0384 | 0.7 | 0.6 | 0.7 | 0.5 | 0.7 | 0.6 |
0385 | −3.5 | 1.1 | −3.5 | 1.1 | −3.5 | 1.1 |
0437 | −0.9 | 0.7 | −0.9 | 0.7 | −0.9 | 0.7 |
0508 | 2.0 | 0.6 | 2.0 | 0.6 | 2.0 | 0.6 |
0527 | 1.6 | 1.3 | 1.5 | 1.6 | 1.6 | 1.0 |
1152 | 2.1 | 0.9 | 2.2 | 1.2 | 2.1 | 0.9 |
1196 | 0.8 | 0.5 | 0.8 | 0.7 | 0.8 | 0.5 |
1242 | 1.9 | 0.8 | 1.9 | 0.8 | 1.9 | 0.8 |
1269 | 1.3 | 0.6 | 1.3 | 0.5 | 1.3 | 0.6 |
1323 | 1.5 | 0.5 | 1.5 | 0.4 | 1.5 | 0.5 |
1325 | 0.9 | 0.7 | 0.9 | 0.6 | 0.9 | 0.7 |
1352 | 0.9 | 0.8 | 0.7 | 0.7 | 0.9 | 0.7 |
1354 | 0.2 | 0.9 | 0.1 | 0.5 | 0.2 | 0.9 |
1394 | 1.1 | 0.7 | 1.1 | 0.7 | 1.1 | 0.7 |
1639 | 3.8 | 1.1 | 4.0 | 1.4 | 3.8 | 1.0 |
1640 | 2.0 | 1.0 | 2.0 | 0.9 | 2.0 | 1.0 |
1799 | 1.0 | 1.0 | 1.0 | 0.6 | 1.0 | 0.9 |
2125 | −0.1 | 1.0 | 0.0 | 1.2 | −0.1 | 0.9 |
2126 | 2.7 | 1.2 | 2.6 | 0.9 | 2.7 | 1.1 |
2127 | 0.0 | 0.6 | 0.1 | 0.8 | 0.0 | 0.5 |
2330 | 0.9 | 0.9 | 1.1 | 1.3 | 0.9 | 0.9 |
References
- Mazzotti, S.; Lambert, A.; Courtier, N.; Nykolaishen, L.; Dragert, H. Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Yousefi, M.; Milne, G.; Li, S.; Wang, K.; Bartholet, A. Constraining Interseismic Deformation of the Cascadia Subduction Zone: New Insights from Estimates of Vertical Land Motion Over Different Timescales. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018248. [Google Scholar] [CrossRef]
- Gray, H.J.; Shobe, C.M.; Hobley, D.E.; Tucker, G.E.; Duvall, A.R.; Harbert, S.A.; Owen, L.A. Off-fault deformation rate along the southern San Andreas fault at Mecca Hills, southern California, inferred from landscape modeling of curved drainages. Geology 2018, 46, 59–62. [Google Scholar] [CrossRef]
- Clark, J.; Mitrovica, J.X.; Latychev, K. Glacial isostatic adjustment in central Cascadia: Insights from three-dimensional Earth modeling. Geology 2019, 47, 295–298. [Google Scholar] [CrossRef]
- Mey, J.; Scherler, D.; Wickert, A.D.; Egholm, D.L.; Tesauro, M.; Schildgen, T.F.; Strecker, M.R. Glacial isostatic uplift of the European Alps. Nat. Commun. 2016, 7, 13382. [Google Scholar] [CrossRef] [PubMed]
- Haq, B.U.; Schutter, S.R. A chronology of Paleozoic sea-level changes. Science 2008, 322, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Steinberger, B.; Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 2008, 319, 1357–1362. [Google Scholar] [CrossRef]
- Miller, K.G.; Mountain, G.S.; Wright, J.D.; Browning, J. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea isotopic records. Oceanography 2011, 24, 40–53. [Google Scholar] [CrossRef]
- Young, A.; Flament, N.; Williams, S.E.; Merdith, A.; Cao, X.; Müller, R.D. Long-term Phanerozoic sea level change from solid Earth processes. Earth Planet. Sci. Lett. 2022, 584, 117451. [Google Scholar] [CrossRef]
- Lambeck, K. Of Moon and Land, Ice and Strand: Sea Level during Glacial Cycles. Of Moon and Land, Ice and Strand; Leo S. Olschki: Florence, Italy, 2014; pp. 1–86. [Google Scholar]
- Sutton, R.T. ESD Ideas: A simple proposal to improve the contribution of IPCC WGI to the assessment and communication of climate change risks. Earth Syst. Dyn. 2018, 9, 1155–1158. [Google Scholar] [CrossRef] [Green Version]
- Sutton, R.T.; Hawkins, E. ESD Ideas: Global climate response scenarios for IPCC assessments. Earth Syst. Dyn. 2020, 11, 751–754. [Google Scholar] [CrossRef]
- Gregory, J.M.; Church, J.A.; Boer, G.J.; Dixon, K.W.; Flato, G.M.; Jackett, D.R.; Lowe, D.R.; O’Fallerll, S.P.; Roeckner, E.; Stouffer, R.J. Comparison of results from several AOGCMs for global and regional sea-level change 1900–2100. Clim. Dyn. 2001, 18, 225–240. [Google Scholar] [CrossRef]
- Holgate, S.J.; Woodworth, P.L. Evidence for enhanced coastal sea level rise during the 1990s. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Hannah, J.; Bell, R.G. Regional sea level trends in New Zealand. J. Geophys. Res. Ocean. 2012, 117, 1004. [Google Scholar] [CrossRef]
- Raj, N.; Gharineiat, Z.; Ahmed, A.A.M.; Stepanyants, Y. Assessment and Prediction of Sea Level Trend in the South Pacific Region. Remote Sens. 2022, 14, 986. [Google Scholar] [CrossRef]
- Camuffo, D.; Bertolin, C.; Schenal, P. A novel proxy and the sea level rise in Venice, Italy, from 1350 to 2014. Clim. Chang. 2017, 143, 73–86. [Google Scholar] [CrossRef]
- Marcos, M.; Tsimplis, M.N. Coastal sea level trends in Southern Europe. Geophys. J. Int. 2008, 175, 70–82. [Google Scholar] [CrossRef]
- Bornman, T.G.; Schmidt, J.; Adams, J.B.; Mfikili, A.N.; Farre, R.E.; Smit, A.J. Relative sea-level rise and the potential for subsidence of the Swartkops Estuary intertidal salt marshes, South Africa. S. Afr. J. Bot. 2016, 107, 91–100. [Google Scholar] [CrossRef]
- Qu, Y.; Jevrejeva, S.; Jackson, L.P.; Moore, J.C. Coastal Sea level rise around the China Seas. Glob. Planet. Chang. 2019, 172, 454–463. [Google Scholar] [CrossRef]
- Baker, T.F. Absolute sea level measurements, climate change and vertical crustal movements. Glob. Planet. Chang. 1993, 8, 149–159. [Google Scholar] [CrossRef]
- Cazenave, A.; Nerem, R.S. Present-day sea level change: Observations and causes. Rev. Geophys. 2004, 42. [Google Scholar] [CrossRef]
- Emery, K.O.; Aubrey, D.G. Sea Levels, Land Levels, and Tide Gauges; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Montillet, J.P.; Melbourne, T.I.; Szeliga, W.M. GPS vertical land motion corrections to sea-level rise estimates in the Pacific Northwest. J. Geophys. Res. Ocean. 2018, 123, 1196–1212. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Bitharis, S.; Ampatzidis, D.; Pikridas, C.; Fotiou, A.; Rossikopoulos, D.; Schuh, H. The role of GNSS vertical velocities to correct estimates of sea level rise from tide gauge measurements in Greece. Mar. Geod. 2017, 40, 297–314. [Google Scholar] [CrossRef]
- Poitevin, C.; Wöppelmann, G.; Raucoules, D.; Le Cozannet, G.; Marcos, M.; Testut, L. Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods. Remote Sens. Environ. 2019, 222, 275–285. [Google Scholar] [CrossRef]
- Christiansen, B.; Schmith, T.; Thejll, P. A surrogate ensemble study of sea level reconstructions. J. Clim. 2010, 23, 4306–4326. [Google Scholar] [CrossRef]
- Press, W.H. Flicker noises in astronomy and elsewhere. Comments Astrophys. 1978, 7, 103–119. [Google Scholar]
- Agnew, D.C. The time-domain behavior of power-law noises. Geophys. Res. Lett. 1992, 19, 333–336. [Google Scholar] [CrossRef]
- Beran, J. Statistical methods for data with long-range dependence. Stat. Sci. 1992, 7, 404–416. [Google Scholar]
- Nerem, R.S.; Chambers, D.P.; Choe, C.; Mitchum, G.T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 2010, 33, 435–446. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.W.; Williams, S.D. The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef]
- Montillet, J.P.; Bos, M. Geodetic Time Series Analysis in Earth Sciences; Springer Geophysics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Armitage, T.W.; Bacon, S.; Ridout, A.L.; Thomas, S.F.; Aksenov, Y.; Wingham, D.J. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014. J. Geophys. Res. Ocean. 2016, 121, 4303–4322. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From observation to information and users: The Copernicus Marine Service perspective. Front. Marine Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Liibusk, A.; Kall, T.; Rikka, S.; Uiboupin, R.; Suursaar, Ü.; Tseng, K.H. Validation of copernicus sea level altimetry products in the baltic sea and estonian lakes. Remote Sens. 2020, 12, 4062. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.P.; Fernandes, R.M.S. Investigation of the noise properties at low frequencies in long GNSS time series. J. Geod. 2019, 93, 1271–1282. [Google Scholar] [CrossRef]
- He, X.; Bos, M.S.; Montillet, J.P.; Fernandes, R.; Melbourne, T.; Jiang, W.; Li, W. Spatial Variations of Stochastic Noise Properties in GPS Time Series. Remote Sens. 2021, 13, 4534. [Google Scholar] [CrossRef]
- Santamaría-Gómez, A.; Bouin, M.N.; Collilieux, X.; Wöppelmann, G. Correlated errors in GPS position time series: Implications for velocity estimates. J. Geophys. Res. Solid Earth 2011, 116, B01405. [Google Scholar] [CrossRef]
- Klos, A.; Kusche, J.; Fenoglio-Marc, L.; Bos, M.S.; Bogusz, J. Introducing a vertical land motion model for improving estimates of sea level rates derived from tide gauge records affected by earthquakes. GPS Solut. 2019, 23, 1–12. [Google Scholar] [CrossRef]
- Hawkins, R.; Husson, L.; Choblet, G.; Bodin, T.; Pfeffer, J. Virtual tide gauges for predicting relative sea level rise. J. Geophys. Res. Solid Earth 2019, 124, 13367–13391. [Google Scholar] [CrossRef]
- Varbla, S.; Ågren, J.; Ellmann, A.; Poutanen, M. Treatment of Tide Gauge Time Series and Marine GNSS Measurements for Vertical Land Motion with Relevance to the Implementation of the Baltic Sea Chart Datum 2000. Remote Sens. 2022, 14, 920. [Google Scholar] [CrossRef]
- Miller, M.M.; Dragert, H.; Endo, E.; Freymueller, J.T.; Goldfinger, C.; Kelsey, H.M.; Humphreys, E.D.; Johnson, D.J.; McCaffrey, R.; Oldow, J.S.; et al. Precise measurements help gauge Pacific Northwest’s earthquake potential. Eos Trans. Am. Geophys. Union 1998, 79, 269–275. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: An improved solution of the international terrestrial reference frame. J. Geod. 2011, 85, 457–473. [Google Scholar] [CrossRef]
- Herring, T.A.; Melbourne, T.I.; Murray, M.H.; Floyd, M.A.; Szeliga, W.M.; King, R.W.; Phillips, D.A.; Puskas, C.M.; Santillan, M.; Wang, L. Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Rev. Geophys. 2016, 54, 759–808. [Google Scholar] [CrossRef]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Bertiger, W.; Desai, S.D.; Haines, B.; Harvey, N.; Moore, A.W.; Owen, S.; Weiss, J.P. Single receiver phase ambiguity resolution with GPS data. J. Geod. 2010, 84, 327–337. [Google Scholar] [CrossRef]
- Herring, T.A.; King, R.W.; McClusky, S.C. GAMIT Reference Manual. GPS Analysis at MIT. Release 10.4; Massachussetts Institute Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Herring, T.A.; King, R.W.; Mc Clusky, S.C. GLOBK: Global Kalman filter VLBI and GPS Analysis Program, Release 10.4; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology: Cambridge, MA, USA, 2010; 91p. [Google Scholar]
- Woodworth, P.L.; Player, R. The permanent service for mean sea level: An update to the 21stCentury. J. Coast. Res. 2003, 19, 287–295. [Google Scholar]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar]
- Bos, M.S.; Williams, S.D.P.; Araújo, I.B.; Bastos, L. The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys. J. Int. 2014, 196, 1423–1430. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG-9. [Google Scholar] [CrossRef]
- Bevis, M.; Brown, A. Trajectory models and reference frames for crustal motion geodesy. J. Geod. 2014, 88, 283–311. [Google Scholar] [CrossRef]
- Montillet, J.P.; Williams, S.D.P.; Koulali, A.; Mc Clusky, S.C. Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys. J. Int. 2015, 200, 1207–1221. [Google Scholar] [CrossRef] [Green Version]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef]
- Langbein, J.; Bock, Y. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Fernandes, R.M.S.; Bos, M.S. Applied Automatic Offset Detection Using HECTOR within EPOS-IP; Time- series, AGU Fall Meeting, G51A-1084; American Geophysical Union: San Francisco, CA, USA, 2016. [Google Scholar]
- Rogers, G.; Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 2003, 300, 1942–1943. [Google Scholar] [CrossRef] [PubMed]
- Melbourne, T.I.; Webb, F.H. Slow but not quite silent. Science 2003, 300, 1886–1887. [Google Scholar] [CrossRef]
- Viesca, R.C.; Dublanchet, P. The slow slip of viscous faults. J. Geophys. Res. Solid Earth 2019, 124, 4959–4983. [Google Scholar] [CrossRef]
- Szeliga, W.; Melbourne, T.; Santillan, M.; Miller, M. GPS constraints on 34 slow slip events within the Cascadia subduction zone, 1997–2005. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef]
- Miller, M.M.; Melbourne, T.; Johnson, D.J.; Sumner, W.Q. Periodic slow earthquakes from the Cascadia subduction zone. Science 2002, 295, 2423. [Google Scholar] [CrossRef]
- Gulick, S.P.; Meltzer, A.S.; Henstock, T.J.; Levander, A. Internal deformation of the southern Gorda plate: Fragmentation of a weak plate near the Mendocino triple junction. Geology 2001, 29, 691–694. [Google Scholar] [CrossRef]
- Prescott, W.H.; Lisowski, M.; Savage, J.C. Geodetic measurement of crustal deformation on the San Andreas, Hayward, and Calaveras faults near San Francisco, California. J. Geophys. Res. Solid Earth 1981, 86, 10853–10869. [Google Scholar] [CrossRef]
- Galehouse, J.S.; Lienkaemper, J.J. Inferences drawn from two decades of alinement array measurements of creep on faults in the San Francisco Bay region. Bull. Seismol. Soc. Am. 2003, 93, 2415–2433. [Google Scholar] [CrossRef]
- Streig, A.R.; Weldon, R.J.; Biasi, G.; Dawson, T.E.; Gavin, D.G.; Guilderson, T.P. New Insights into Paleoseismic Age Models on the Northern San Andreas Fault: Charcoal Inbuilt Ages and Updated Earthquake Correlations. Bull. Seismol. Soc. Am. 2020, 110, 1077–1089. [Google Scholar] [CrossRef]
- Melbourne, T.I.; Szeliga, W.M.; Miller, M.M.; Santillan, V.M. Extent and duration of the 2003 Cascadia slow earthquake. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Keranen, K.M.; Mace, C. Oblique Fault Systems Crossing the Seattle Basin: Seismic and Aeromagnetic Evidence for Additional Shallow Fault Systems in the Central Puget Lowland. J. Geophys. Res. Solid Earth 2011, 117, GP33B-04. [Google Scholar]
- Michel, S.; Gualandi, A.; Avouac, J.P. Similar scaling laws for earthquakes and Cascadia slow-slip events. Nature 2019, 574, 522–526. [Google Scholar] [CrossRef]
- Hammond, W.C.; Blewitt, G.; Kreemer, C. GPS Imaging of vertical land motion in California and Nevada: Implications for Sierra Nevada uplift. J. Geophys. Res. Solid Earth 2016, 121, 7681–7703. [Google Scholar] [CrossRef]
- Langenheim, V.E.; Graymer, R.W.; Jachens, R.C.; McLaughlin, R.J.; Wagner, D.L.; Sweetkind, D.S. Geophysical framework of the northern San Francisco Bay region, California. Geosphere 2010, 6, 594–620. [Google Scholar] [CrossRef]
- Rosen, P.; Werner, C.; Fielding, E.; Hensley, S.; Buckley, S.; Vincent, P. Aseismic creep along the San Andreas Fault northwest of Parkfield, CA measured by radar interferometry. Geophys. Res. Lett. 1998, 25, 825–828. [Google Scholar] [CrossRef]
- Carpenter, B.M.; Marone, C.; Saffer, D.M. Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nat. Geosci. 2011, 4, 251–254. [Google Scholar] [CrossRef]
- Bürgmann, R.; Segall, P.; Lisowski, M.; Svarc, J. Postseismic strain following the 1989 Loma Prieta earthquake from GPS and leveling measurements. J. Geophys. Res. Solid Earth 1997, 102, 4933–4955. [Google Scholar] [CrossRef]
- Fumal, T.E. Timing of large earthquakes during the past 500 years along the Santa Cruz mountains segment of the San Andreas fault at Mill Canyon, near Watsonville, California. Bull. Seismol. Soc. Am. 2012, 102, 1099–1119. [Google Scholar] [CrossRef]
- Lindsey, E.O.; Fialko, Y.; Bock, Y.; Sandwell, D.T.; Bilham, R. Localized and distributed creep along the southern San Andreas Fault. J. Geophys. Res. Solid Earth 2014, 119, 7909–7922. [Google Scholar] [CrossRef]
- Sweet, W.V.; Park, J. From the extreme to the mean: Acceleration and tipping points of coastal inundation from sea level rise. Earths Future 2014, 2, 579–600. [Google Scholar] [CrossRef]
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of US coastal counties. J. Coast. Res. 2005, 21, 932–942. [Google Scholar] [CrossRef]
- van Westen, R.M.; Dijkstra, H.A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 2021, 7, eabf1674. [Google Scholar] [CrossRef]
- Gall, M.; Boruff, B.J.; Cutter, S.L. Assessing flood hazard zones in the absence of digital floodplain maps: Comparison of alternative approaches. Nat. Hazards Rev. 2007, 8, 1–12. [Google Scholar] [CrossRef]
- De Biasio, F.; Baldin, G.; Vignudelli, S. Revisiting vertical land motion and sea level trends in the Northeastern Adriatic Sea using satellite altimetry and tide gauge data. J. Mar. Sci. Eng. 2020, 8, 949. [Google Scholar] [CrossRef]
- Oelsmann, J.; Passaro, M.; Dettmering, D.; Schwatke, C.; Sánchez, L.; Seitz, F. The zone of influence: Matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation. Ocean Sci. 2021, 17, 35–57. [Google Scholar] [CrossRef]
- Yang, L.; Jin, T.; Gao, X.; Wen, H.; Schöne, T.; Xiao, M.; Huang, H. Sea Level Fusion of Satellite Altimetry and Tide Gauge Data by Deep Learning in the Mediterranean Sea. Remote Sens. 2021, 13, 908. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Moore, J.C.; Grinsted, A.; Matthews, A.P.; Spada, G. Trends and acceleration in global and regional sea levels since 1807. Glob. Planet. Chang. 2014, 113, 11–22. [Google Scholar] [CrossRef] [Green Version]
Station | ID | Lat | Lon | Station | ID | Lat | Lon |
---|---|---|---|---|---|---|---|
SAN FRANCISCO (Sanf) | 0010 | 37.81 | −122.47 | SOUTH BEACH (S.Be) | 1196 | 44.63 | −124.04 |
SEATTLE (Seat) | 0127 | 47.60 | −122.34 | BAMFIELD (Bamf) | 1242 | 48.85 | −125.13 |
SAN DIEGO (SanD) | 0158 | 32.71 | −117.17 | CHARLESTON II (Char) | 1269 | 43.35 | −124.32 |
TOFINO (Tofi) | 0165 | 49.15 | −125.92 | CAMPBELL RIVER (Camp) | 1323 | 50.02 | −125.23 |
VICTORIA (Vict) | 0166 | 48.42 | −123.37 | PORT TOWNSEND (P.To) | 1325 | 48.11 | −122.76 |
LOS ANGELES (LosA) | 0245 | 33.72 | −118.27 | MONTEREY (Mont) | 1352 | 36.61 | −121.89 |
LA JOLLA (LaJo) | 0256 | 32.87 | −117.26 | TOKE POINT (Toke) | 1354 | 46.71 | −123.97 |
ASTORIA (Asto) | 0265 | 46.21 | −123.77 | POINT REYES (P. Re) | 1394 | 38.00 | −122.98 |
SANTA MONICA (S.Mo) | 0377 | 34.01 | −118.50 | N. SPIT (Humb) | 1639 | 40.77 | −124.22 |
CRESCENT CITY (Cres) | 0378 | 41.75 | −124.18 | PORT ORFORD (P. Or) | 1640 | 42.74 | −124.50 |
FRIDAY HARBOR (Fr.H) | 0384 | 48.55 | −123.01 | WINTER HARBOUR (WinH) | 1799 | 50.52 | −128.03 |
NEAH BAY (Ne.B) | 0385 | 48.37 | −124.61 | ARENA COVE (Aren) | 2125 | 38.91 | −123.71 |
ALAMEDA (Alam) | 0437 | 37.77 | −122.30 | SANTA BARBARA (S.Ba) | 2126 | 34.41 | −119.69 |
PORT SAN LUIS (P.Sa) | 0508 | 35.18 | −120.76 | PORT ANGELES (P. An) | 2127 | 48.13 | −123.44 |
PORT ALBERNI (P.Al) | 0527 | 49.23 | −124.82 | PORT CHICAGO (P. Ch) | 2330 | 38.06 | −122.04 |
PATRICIA BAY (Pa.B) | 1152 | 48.65 | −123.45 | Note: details see www.psmsl.org (accessed on 10 January 2022) |
Model | PANGA | NMT | ||||
---|---|---|---|---|---|---|
AIC | BIC | BIC_tp | AIC | BIC | BIC_tp | |
FN+RW+WN | 0 | 0 | 0 | 0 | 0 | 0 |
FN+WN | 17 | 21 | 21 | 11 | 18 | 18 |
GGM+WN | 58 | 55 | 55 | 138 | 137 | 137 |
PL+WN | 330 | 329 | 329 | 256 | 250 | 250 |
∑ | 405 | 405 | 405 | 405 | 405 | 405 |
Solution | AIC | BIC | BIC_tp |
---|---|---|---|
PANGA | 4.8 | 4.8 | 4.8 |
NMT | 3.8 | 3.7 | 3.7 |
Mean Sea level Pacific Coast (mm/yr) | Model | |||||
---|---|---|---|---|---|---|
ARMA | ARFIMA | GGM | ||||
u | Sigma | u | Sigma | u | Sigma | |
SLR (SSH) | 1.9 | 1.8 | 1.8 | 2.0 | 1.9 | 1.7 |
ASLR (NMT) | 0.8 | 1.7 | 0.8 | 1.7 | 0.8 | 1.7 |
ASLR (PANGA) | 1.8 | 1.5 | 1.8 | 1.5 | 1.8 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Montillet, J.-P.; Fernandes, R.; Melbourne, T.I.; Jiang, W.; Huang, Z. Sea Level Rise Estimation on the Pacific Coast from Southern California to Vancouver Island. Remote Sens. 2022, 14, 4339. https://doi.org/10.3390/rs14174339
He X, Montillet J-P, Fernandes R, Melbourne TI, Jiang W, Huang Z. Sea Level Rise Estimation on the Pacific Coast from Southern California to Vancouver Island. Remote Sensing. 2022; 14(17):4339. https://doi.org/10.3390/rs14174339
Chicago/Turabian StyleHe, Xiaoxing, Jean-Philippe Montillet, Rui Fernandes, Timothy I. Melbourne, Weiping Jiang, and Zhengkai Huang. 2022. "Sea Level Rise Estimation on the Pacific Coast from Southern California to Vancouver Island" Remote Sensing 14, no. 17: 4339. https://doi.org/10.3390/rs14174339
APA StyleHe, X., Montillet, J. -P., Fernandes, R., Melbourne, T. I., Jiang, W., & Huang, Z. (2022). Sea Level Rise Estimation on the Pacific Coast from Southern California to Vancouver Island. Remote Sensing, 14(17), 4339. https://doi.org/10.3390/rs14174339