Analysis of the Atmospheric Duct Existence Factors in Tropical Cyclones Based on the SHAP Interpretation of Extreme Gradient Boosting Predictions
<p>The tracks of 164 hurricanes in the eastern Pacific and North Atlantic during 1996–2020.</p> "> Figure 2
<p>XGBoost model and SHAP interpretation construction diagram.</p> "> Figure 3
<p>The top 20 most important features are obtained by sorting all of them according to SHAP values based on the total dataset.</p> "> Figure 4
<p>The SHAP dependence plot for TC parameters and the location of dropsondes.</p> "> Figure 5
<p>The SHAP values ranking of the humidity at pressure levels and dependence for the two most important ones.</p> "> Figure 6
<p>The SHAP values ranking of the temperature at pressure levels and dependence for the two most important ones.</p> "> Figure 7
<p>The SHAP values ranking of the winds at pressure levels and dependence for the two most important ones.</p> "> Figure 8
<p>The track of the tropical storm Nestor and the location of dropsondes with ducts and with no ducts. Point 1, 2 and 3 represent the three dropsondes for further analysis of the reason for existing ducts.</p> "> Figure 9
<p>Decomposed SHAP values for the individual prediction of three examples with ducts.</p> "> Figure 10
<p>The vertical profile of modified refractivity, temperature and water vapor pressure at Point 1, 2 and 3. (<b>a</b>–<b>c</b>) represent Point 1. (<b>d</b>–<b>f</b>) represent Point 2. (<b>g</b>–<b>i</b>) represent Point 3.</p> ">
Abstract
:1. Introduction
2. Data, Model and Methods
2.1. The Method of Determining TC Ducts
2.2. Datasets for the Predictions of TC Ducts
2.3. XGBoost Model
2.4. SHAP Interpretation for the TC Ducts Prediction
3. Results and Discussion
3.1. The Performance of the XGBoost Algorithm on the Testing Dataset
3.2. The Top 20 Most Important Features to the Existence of the AD
3.3. The Relationship between AD Existence and the Features
4. Case Analysis in the Tropical Storm Nestor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Von Engeln, A. A Ducting Climatology Derived from the European Centre for Medium-Range Weather Forecasts Global Analysis Fields. J. Geophys. Res. 2004, 109, D18104. [Google Scholar] [CrossRef]
- Sun, Z.; Ning, H.; Song, S.; Yan, D. First Observations of Elevated Ducts Associated with Intermittent Turbulence in the Stable Boundary Layer over Bosten Lake, China: Elevated Duct Associated with Turbulence. J. Geophys. Res. Atmos. 2016, 121, 11,201–11,214. [Google Scholar] [CrossRef]
- Turton, J.D.; Bennetts, D.A.; Farmer, S.G. An introduction to radio ducting. Meteorol. Mag. 1988, 117, 245–254. [Google Scholar]
- Pan, Z.; Liu, S.; Guo, L. The predictions of ducts in south-east coast of China. Chin. J. Radio. Sci. 1996, 11, 58–64. [Google Scholar]
- Ding, J.; Fei, J.; Huang, X.; Cheng, X.; Hu, X. Observational Occurrence of Tropical Cyclone Ducts from GPS Dropsonde Data. J. Appl. Meteorol. Climatol. 2013, 52, 1221–1236. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Q.; Wang, S.; Yang, K.; Yang, Y.; Ma, Y. Impact of Typhoon on Evaporation Duct in the Northwest Pacific Ocean. IEEE Access 2019, 7, 109111–109119. [Google Scholar] [CrossRef]
- Fei, J.; Ding, J.; Huang, X.; Cheng, X.; Hu, X. Numerical Study on the Impacts of the Bogus Data Assimilation and Sea Spray Parameterization on Typhoon Ducts. Acta Meteorol Sin. 2013, 27, 308–321. [Google Scholar] [CrossRef]
- von Engeln, A.; Nedoluha, G.; Teixeira, J. An Analysis of the Frequency and Distribution of Ducting Events in Simulated Radio Occultation Measurements Based on Ecmwf Fields: Distribution of Ducting Events. J. Geophys. Res. 2003, 108, D21. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, Q.; Shi, Y. Interannual Variability of the Evaporation Duct over the South China Sea and Its Relations with Regional Evaporation: Relate Evaporation Duct to Evaporation. J. Geophys. Res. Oceans 2017, 122, 6698–6713. [Google Scholar] [CrossRef]
- Manjula, G.; Roja Raman, M.; Venkat Ratnam, M.; Chandrasekhar, A.V.; Vijaya Bhaskara Rao, S. Diurnal Variation of Ducts Observed over a Tropical Station, Gadanki, Using High-Resolution GPS Radiosonde Observations: Diurnal Variation of Ducts. Radio Sci. 2016, 51, 247–258. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Huang, S.; Huang, K.; Chen, J. Statistical Estimations of Atmospheric Duct over the South China Sea and the Tropical Eastern Indian Ocean. Chin. Sci. Bull. 2013, 58, 2794–2797. [Google Scholar] [CrossRef]
- Dockery, G.D. Modeling Electromagnetic Wave Propagation in the Troposphere Using the Parabolic Equation. IEEE Trans. Antennas Propagat. 1988, 36, 1464–1470. [Google Scholar] [CrossRef]
- Cook, J. A Sensitivity Study of Weather Data Inaccuracies on Evaporation Duct Height Algorithms. Radio Sci. 1991, 26, 731–746. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A Hybrid Deep Learning Model for Short-Term PV Power Forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A Novel Time Series Forecasting Model with Deep Learning. Neurocomputing 2020, 396, 302–313. [Google Scholar] [CrossRef]
- Ham, Y.-G.; Kim, J.-H.; Luo, J.-J. Deep Learning for Multi-Year ENSO Forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Shen, M.; Keenlyside, N.; Selten, F.; Wiegerinck, W.; Duane, G.S. Dynamically Combining Climate Models to “Supermodel” the Tropical Pacific. Geophys. Res. Lett. 2016, 43, 359–366. [Google Scholar] [CrossRef]
- Guo, P.; Kuo, Y.-H.; Sokolovskiy, S.V.; Lenschow, D.H. Estimating Atmospheric Boundary Layer Depth Using COSMIC Radio Occultation Data. J. Atmos. Sci. 2011, 68, 1703–1713. [Google Scholar] [CrossRef]
- Hwang, J.; Orenstein, P.; Cohen, J.; Pfeiffer, K.; Mackey, L. Improving subseasonal forecasting in the western US with machine learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 25 July 2019; pp. 2325–2335. [Google Scholar]
- Gao, S.; Huang, Y.; Zhang, S.; Han, J.; Wang, G.; Zhang, M.; Lin, Q. Short-Term Runoff Prediction with GRU and LSTM Networks without Requiring Time Step Optimization during Sample Generation. J. Hydrol. 2020, 589, 125188. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Zhu, M.; Jiang, Z.; Li, Y. An Evaporation Duct Height Prediction Method Based on Deep Learning. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1307–1311. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.-J.; Zhu, Q.-L.; Wang, H.-G.; Zhou, Y.-F.; Jiang, M.-B.; Zhang, S.-B.; Wang, B. Evaporation Duct Height Nowcasting in China’s Yellow Sea Based on Deep Learning. Remote Sens. 2021, 13, 1577. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Dong, H.; Xu, X.; Wang, L.; Pu, F. Gaofen-3 PolSAR Image Classification via XGBoost and Polarimetric Spatial Information. Sensors 2018, 18, 611. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.P.; Li, J.; Zhao, J.; Zhao, D.; Lu, J.; Wang, X. XGB Model: Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm. Radio Eng. 2020, 29, 81–93. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Smith, E.K.; Weintraub, S. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef]
- NOAA-DHA: Long-Term NOAA Dropsonde Hurricane Archive. Version 2.0; UCAR/NCAR–Earth Observing Laboratory: Boulder, CO, USA, 2017. [CrossRef]
- Zhu, M.; Atkinson, B.W. Simulated Climatology of Atmospheric Ducts Over the Persian Gulf. Bound.-Layer Meteorol. 2005, 115, 433–452. [Google Scholar] [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Kursinski, E.R.; Hajj, G.A.; Leroy, S.S.; Herman, B. The GPS radio occultation technique. Terr. Atmos. Oceanic Sci. 2000, 11, 53–114. [Google Scholar] [CrossRef]
- Peng, L.R.; Shu, S. Analysis on structure of Typhoon Longwang based on GPS dropsonde data. Chin. J. Trop. Meteor. 2010, 26, 13–21. [Google Scholar]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef]
- Mai, Y.; Sheng, Z.; Shi, H.; Liao, Q. Using Improved XGBoost Algorithm to Obtain Modified Atmospheric Refractive Index. Int. J. Antennas Propag. 2021, 2021, 5506599. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Lundberg, S. Interpretable Machine Learning with XGBoost. Available online: https://towardsdatascience.com/interpretable-machine-learning-with-xgboost-9ec80d148d27 (accessed on 1 August 2022).
- Shapley, L.S. Quota solutions op n-person games1. Contrib. Theory Games (AM-28) Vol. II 2016, 28, 343. [Google Scholar]
- Dataman: Explain Your Model with the SHAP Values–Towards Data Science. Available online: https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d (accessed on 1 August 2022).
Category | Feature Name |
---|---|
Meteorological parameters | Specific humidity (1000–500 hPa) |
Temperature (1000–500 hPa) | |
Zonal winds (1000–500 hPa) | |
Meridional winds (1000–500 hPa) | |
TC parameters | TC grades |
TC RMW | |
Dropsonde quadrant | |
TC-dropsonde distance | |
Location parameters | Latitude |
Longitude |
Parameter | Value |
---|---|
Learning_rate | 0.05 |
Max_depth | 9 |
N_estimators | 3000 |
Min_child_weight | 1 |
Reg_lamda | 1 |
Reg_alpha | 0.1 |
Subsample | 0.9 |
Colsample_bytree | 0.9 |
Gamma | 0 |
Pressure Levels (hPa) | Altitudes (km) |
---|---|
500 | 4.94 |
550 | 4.42 |
600 | 3.48 |
650 | 3.06 |
700 | 2.67 |
750 | 2.31 |
775 | 1.98 |
800 | 1.68 |
825 | 1.41 |
850 | 1.17 |
875 | 0.95 |
900 | 0.76 |
925 | 0.60 |
950 | 0.46 |
975 | 0.24 |
1000 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhao, X.; Liu, Y.; Yang, P. Analysis of the Atmospheric Duct Existence Factors in Tropical Cyclones Based on the SHAP Interpretation of Extreme Gradient Boosting Predictions. Remote Sens. 2022, 14, 3952. https://doi.org/10.3390/rs14163952
Huang L, Zhao X, Liu Y, Yang P. Analysis of the Atmospheric Duct Existence Factors in Tropical Cyclones Based on the SHAP Interpretation of Extreme Gradient Boosting Predictions. Remote Sensing. 2022; 14(16):3952. https://doi.org/10.3390/rs14163952
Chicago/Turabian StyleHuang, Lang, Xiaofeng Zhao, Yudi Liu, and Pinglv Yang. 2022. "Analysis of the Atmospheric Duct Existence Factors in Tropical Cyclones Based on the SHAP Interpretation of Extreme Gradient Boosting Predictions" Remote Sensing 14, no. 16: 3952. https://doi.org/10.3390/rs14163952