Near-Earth Remote Sensing Images Used to Determine the Phenological Characteristics of the Canopy of Populus tomentosa B301 under Three Methods of Irrigation
"> Figure 1
<p>Aerial photograph of the study location and Forest Farm.</p> "> Figure 2
<p>Schematic diagram of different irrigation methods in the test base:(<b>a</b>) Base experiment, (<b>b</b>) BIFI Irrigation map, (<b>c</b>) DIFI Irrigation map.</p> "> Figure 3
<p>Test equipment and installation site.</p> "> Figure 4
<p>Preset point location and region of interest:(Image taken by state owned forest farm of Gaotang County, Liaocheng City, Shandong Province).</p> "> Figure 5
<p>Variation of growing season in one year: (The experimental base was photographed in the state-owned forest farm of Gaotang County, Liaocheng City, Shandong Province, China).</p> "> Figure 6
<p>Rainfall data: (<b>a</b>) annual rainfall, (<b>b</b>) CK rainfall, (<b>c</b>) DIFI irrigation volume and duration, (<b>d</b>) BIFI irrigation volume and duration.</p> "> Figure 7
<p>Vegetation index analysis of different irrigation methods.</p> "> Figure 7 Cont.
<p>Vegetation index analysis of different irrigation methods.</p> "> Figure 8
<p>Partial enlargement of vegetation index: (<b>a</b>) GGR-local enlarged view during growth, (<b>b</b>) GGR-Detail enlarged view during defoliation, (<b>c</b>) GCC-local enlarged view during growth, (<b>d</b>) GCC-Detail enlarged view during defoliation, (<b>e</b>) GEI-local enlarged view during growth, (<b>f</b>) GEI-Detail enlarged view during defoliation, (<b>g</b>) GRVI-local enlarged view during growth, (<b>h</b>) GRVI- Detail enlarged view during defoliation.</p> "> Figure 8 Cont.
<p>Partial enlargement of vegetation index: (<b>a</b>) GGR-local enlarged view during growth, (<b>b</b>) GGR-Detail enlarged view during defoliation, (<b>c</b>) GCC-local enlarged view during growth, (<b>d</b>) GCC-Detail enlarged view during defoliation, (<b>e</b>) GEI-local enlarged view during growth, (<b>f</b>) GEI-Detail enlarged view during defoliation, (<b>g</b>) GRVI-local enlarged view during growth, (<b>h</b>) GRVI- Detail enlarged view during defoliation.</p> "> Figure 9
<p>Changes in GCC vegetation index under different irrigation methods: (<b>a</b>) Relationship between CK and GCC vegetation index data, (<b>b</b>) Relationship between DIFI and GCC vegetation index data, (<b>c</b>) Relationship between BIFI and GCC vegetation index data, (<b>d</b>) GCC- local enlarged view during growth.</p> "> Figure 10
<p>Growth changes at different preset points during the rainy season.</p> "> Figure 11
<p>Growth curve fitting and key phenological period extraction at different preset points.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of the Study Area
2.2. Study Object
2.3. Experimental Design
2.4. Experimental Monitoring Equipment
2.5. Study Area Selection and Phenological Evaluation Indicator
Vegetation Index Calculation
2.6. Data Curve Fitting and Phenology Extraction
3. Results
3.1. Irrigation Duration and Irrigation Amount
3.2. Comparison of Vegetation Indexes at Different Preset Points
Partial Enlargement of the Same Vegetation Index at Different Preset Points
3.3. Growth Response of P. Tomentosa B301 under Different Irrigation Methods and Irrigation Volumes
3.4. Impact of Precipitation on Growth during the Rainy Season
3.5. Fitting of the Vegetation Growth Data Curve and Extraction of the Growth Feature Time Nodes
Time Node Extraction of Vegetation Growth Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schwartz Mark, D. The phylogeny of The Canterbury Tales. Green-Wave Phenol. Nat. 1998, 394, 839–840. [Google Scholar] [CrossRef]
- Lu, P.; Yu, Q.; He, Q. Responses of plant phenology to climatic change. Acta Ecol. Sin. 2006, 26, 923–929. [Google Scholar] [CrossRef]
- Zhou, Y. Asymmetric Behavior of Vegetation Seasonal Growth and the Climatic Cause: Evidence from Long-Term NDVI Dataset in Northeast China. Remote Sens. 2019, 11, 2107. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.J.; Jin, H.Y.; Zhang, Y.H.; Zhou, Z.Q.; Liu, T. Advances in plant phenology. Acta Ecol. Sin. 2020, 40, 6705–6719. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C. Climate-associated changes in spring plant phenology in China. Int. J. Biometeorol. 2012, 56, 269–275. [Google Scholar] [CrossRef]
- Zhai, J.; Yuan, F.; Wu, J. Research progress on vegetation phenological changes. Chin. J. Ecol. 2015, 34, 3237–3243. [Google Scholar] [CrossRef]
- Fei, M.O.; Hong, Z.H.A.O.; Wang, J.; Qiang, S.; Zhou, H.; Wang, S.; Xiong, Y. The Key issues on plant phenology under global change. Acta Ecol. Sin. 2011, 31, 2593–2601. [Google Scholar]
- Keller, F.; Körner, C. The role of photoperiodism in alpineplant development. Arct. Antarct. Alp. Res. 2003, 35, 361–368. [Google Scholar] [CrossRef]
- Hou, M.; Yan, X. Detecting Vegetation Phenological Changes in Response to Climate in Eastern China. Adv. Meteorol. Sci. Technol. 2012, 2, 39–47. [Google Scholar] [CrossRef]
- Oliver, S.; Koen, H.; Cory, T.; Young, A.M.; Mark, F.; Bobby, H.B.; Thomas, M.; John, O.; Andrew, R. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Wang, C. Autumn phenology of a temperate deciduous forest: Validation of remote sensing approach with decadal leaf-litterfall measurements. Agric. For. Meteorol. 2019, 279, 107758. [Google Scholar] [CrossRef]
- Zhou, Y.K. Comparative study of vegetation phenology extraction methods based on digital images. Prog. Geogr. 2018, 37, 1031–1044. [Google Scholar] [CrossRef]
- Zhou, L.; He, H.; Zhang, L.; Sun, X.; Shi, P.; Ren, X.; Yu, G. Simulations of phenology in alpine grassland communities in Damxung, Xizang, based on digital camera images. Chin. J. Plant Ecol. 2012, 36, 1125–1135. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Robert, B.; Reto, S.; Jürg, S.; Pavel, M.; Francois, J.; Heinz, W.; Werner, E. Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography. J. Geophys. Res. 2008, 113, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Greenness Index from Phenocams Performs Well in Linking Climatic Factors and Monitoring Grass Phenology in a Temper-ate Prairie Ecosystem. J. Resour. Ecol. 2019, 10, 481–493. [Google Scholar] [CrossRef]
- Liu, F.; Wang, K.-C.; Wang, X.-C. Application of near-surface remote sensing in monitoring the dynamics of forest canopy phenology. Chin. J. Appl. Ecol. 2018, 29, 1768–1778. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, F. Spring phonological Change in Beijing in the Last 50 Years and Its Response to the Climatic Changes. Agricultural 2001, 22, 1–5. [Google Scholar] [CrossRef]
- Walker, M.D.; Ingersoll, R.C.; Webber, P.J. Effets of interannual climate variation on phenology and growth of two alpines forbs. Ecology 1995, 76, 1067–1083. [Google Scholar] [CrossRef]
- Lampe, M.G.; Bergeron, Y.; McNeil, R.; Leduc, A. Seasonal flowering and fruiting patterns in tropical semi-arid vegetation of northeastern Venezuela. Biotropica 1992, 24, 64–76. [Google Scholar] [CrossRef]
- Savé, R.; de Herralde, F.; Aranda, X.; Pla, E.; Pascual, D.; Funes, I.; Biel, C. Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximation to watershed-level water balance. Agric. Water Manag. 2012, 114, 78–87. [Google Scholar] [CrossRef]
- Xi, B.; Li, G.; Mark, B.; Jia, L. The effects of subsurface irrigation at different soil water potential thresholds on the growth and transpiration of Populus tomentosa in the North China Plain. Aust. For. 2014, 77, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.K. High Yield Cultivation of Poplar; Golden Shield Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Li, D.; Xi, B.; Tang, L.; Feng, C.; He, Y.; Zhang, Y.; Liu, L.; Liu, J.; Jia, L. Patterns of Soil Water Movement in Drip-Irrigated Young Populus tomentosa Plantations on Sandy Loam Soil and Their Simulation. Sci. Silvae Sin. 2018, 54, 157–168. [Google Scholar] [CrossRef]
- Xi, B.; Clothier, B.; Coleman, M.; Duan, J.; Hu, W.; Li, D.; Di, N.; Liu, Y.; Fu, J.; Li, J.; et al. Irrigation management in poplar (Populus spp.) plantations: A review. For. Ecol. Manag. 2021, 494, 119330. [Google Scholar] [CrossRef]
- Zhu, Z.; Lin, H.; Kang, X. Studies on allotripl breeding of populus Tomentosa B301clones. Sci. Silvae Sin. 1995, 31, 499–505. Available online: http://www.linyekexue.net/CN/Y1995/V31/I6/499 (accessed on 12 July 2021).
- Xi, B.; Bloomberg, M.; Watt, M.S.; Wang, Y.; Jia, L.M. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agric. Water Manag. 2016, 176, 243–254. [Google Scholar] [CrossRef]
- Li, D.; Xi, B.; Wang, F.; Jia, S.; Zhao, H.; He, Y.; Liu, Y.; Jia, L. Patterns of variations in leaf turgor pressure and responses to environmental factors in Populus tomentosa. Chin. J. Plant Ecol. 2018, 42, 741–751. [Google Scholar] [CrossRef]
- Adamsen, F.J.; Pinter, P.J., Jr.; Barnes, E.M.; LaMorte, R.L.; Wall, G.W.; Leavitt, S.W.; Kimball, B.A. Measuring wheat senescence with a digital camera. Crop Sci. 1999, 39, 719–724. [Google Scholar] [CrossRef]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color-enhancement of highly correlated images-channel ratio and ‘chromaticity’ transformation techniques. Remote Sens. Environ. 1987, 22, 343–365. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Kawashima, S.; Nakatani, M. An algorithm for estimating chlorophyll content in leaves using a video camera. Ann. Bot. 1998, 81, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Joblove, G.H.; Greenberg, D. Color spaces for computer graphics. In Proceedings of the 5th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 23–25 August 1978; Volume 12, pp. 20–25. [Google Scholar]
- Xia, L.; Niu, Y.; Li, A.; Wu, S.; Wang, X. Discussion on the request and standard of Woody plant phenological observation. Shanxi Meteorol. Q. 2006, 75, 47–48. [Google Scholar]
- Nijland, W.; De Jong, R.; De Jong, S.M.; Wulder, M.A.; Bater, C.W.; Coops, N.C. Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agric. For. Meteorol. 2014, 184, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Zhang, Y.; Song, Q.; Lin, Y.; Sha, L.; Jin, Y.; Liu, Y.; Fei, X.; Gao, J.; He, Y.; et al. Relationship between gross primary production and canopy colour indices from digital camera images in a rubber (Hevea brasiliensis) plantation Southwest China. For. Ecol. Manag. 2019, 437, 222–231. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Mustard, J.F. Beyond leaf color: Comparing camera-based phenological metrics with leaf biochemical, biophysical, and spectral properties throughout the growing season of a temperate deciduous forest. J. Geophys. Res. Biogeosci. 2014, 119, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wu, C.; Sonnentag, O.; Desai, A.R.; Wang, J. Using the red chromatic coordinate to characterize the phenology of forest canopy photosynthesis. Agric. For. Meteorol. 2020, 285–286, 107910. [Google Scholar] [CrossRef]
- Teng, J.; Liu, Y.; Ding, M. The Evaluation of Efficiency of Color Metrics in Monitoring Robiuia Pseudoucuciu Phonology based on RUB images. Remote Sens. Technol. Appl. 2018, 33, 476–485. [Google Scholar] [CrossRef]
- Mikko, P.; Mika, A.; Kristin, B.; Pasi, K.; John, L.; Tatu, H.; Jouni, K.; Maiju, L.; Melih, T.C.; Sari, M.; et al. Networked web-cameras monitor congruent seasonal development of birches with phenological feld observations. Agric. For. Meteorol. 2017, 249, 335–347. [Google Scholar] [CrossRef] [Green Version]
- Xi, B.; Wang, Y.; Di, N.; Jia, L.M.; Li, G.D.; Huang, X.F.; Gao, Y.Y. Effects of soil water potential on the growth and physiological characteristics of Populus tomentosa pulpwood plantation under subsurface drip irrigation. Acta Ecol. Sin. 2012, 32, 5318–5329. [Google Scholar] [CrossRef] [Green Version]
- Xi, B.; Wang, Y.; Jia, L.M.; Bloomberg, M.; Li, G.D.; Di, N. Characteristics of fine root system and water uptake in a triploid Populus tomentosa plantation in the North China Plain: Implications for irrigation water management. Agric. Water Manag. 2013, 117, 83–92. [Google Scholar] [CrossRef]
- Bhunia, S.R.; Verma, I.M.; Sahu, M.P.; Sharma, N.C.; Balai, K. Effect of drip irrigation and bioregulators on yield, economics and water use of fenugreek (Trigonella foenum-graecum). J. Spices Aromat. Crops 2015, 24, 102–105. [Google Scholar]
- Li, J.; Li, Y.; Wang, J.; Wang, Z.; Zhao, W. Microirrigation in China: History, current situation and prospects. J. Hydraul. Eng. 2016, 47, 372–381. [Google Scholar] [CrossRef]
- Jia, L.M.; Xing, C.S.; Wei, Y.K.; Li, Y.A.; Yang, L. The growth and photosynthesis of poplar trees in fast-growing and high-yield plantations with subterranean drip irrigation. Sci. Silvae Sin. 2004, 40, 61–67. [Google Scholar] [CrossRef]
- Zhao, S.; Xing, H.; Yang, Q. Effect of regulated deficit irrigation in the vegetative growth stage on the growth of Panax notoginseng and the microenvironment of its root zone. J. Hunan Agric. Univ. (Nat. Sci.) 2019, 45, 92–96. [Google Scholar]
- Zhang, F. Effects of global warming on plant phenological everts in China. Acta Geogr. Sin. 1995, 50, 402–410. [Google Scholar] [CrossRef]
- Wang, L.; Chen, H.; Li, Q.; Yu, W. Research advances in plant phenology and clin ate. Acta Ecol. Sin. 2010, 30, 447–454. [Google Scholar]
- Valdés, A.; Marteinsdóttir, B.; Ehrlén, J.A. natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming. Glob. Chang. Biol. 2018, 25, 954–962. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Jiu, J.; Hu, H.; Li, K.; Qing, P. Response of vegetation index to climate change in Wushaoling Plateau of Qilian Mountains. Ecol. Sci. 2021, 40, 74–81. [Google Scholar] [CrossRef]
- Bai, W.; Hu, F.; Zhao, Y. Effect of Preciptatian on Vegetation Coverage and Aboveground Biomass in Alpine Meadow Grassland. J. Anim. Sci. Vet. Med. 2021, 40, 62–64. [Google Scholar] [CrossRef]
- Yang, Q. Influence of Rainfall on Vegetation Change and Ecological Environment in Source Region of Yellow River. Environ. Sci. Manag. 2021, 45, 146–151. [Google Scholar] [CrossRef]
- Li, M.; Li, G. Relationship between phenology of vegetation canopy and phenology of tree cambium in Helan Mountains, China. Chin. J. Appl. Ecol. 2021, 32, 495–502. [Google Scholar] [CrossRef]
Soil Depth (cm) | Particle Size Distribution (%) | Texture 1 | Bulk Density (g·cm−3) | Field Water-Holding Capacity (cm3·cm−3) | Saturated Water Content/(cm3·cm−3) | Organic Matter (g·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
Sand Silt Clay | ||||||||||
0–50 | 61.79 | 35.52 | 2.70 | Sandy loam | 1.41 | 0.34 | 0.44 | 4.7 | 7.26 | 44.42 |
50–140 | 63.92 | 33.69 | 2.39 | Sandy loam | 1.43 | 0.36 | 0.45 | 2.3 | 0.97 | 27.85 |
140–300 | 29.62 | 65.54 | 4.84 | Silt loam | 1.46 | 0.35 | 0.44 | 2.6 | 1.63 | 41.98 |
Color Index | Equation | Reference |
---|---|---|
Ratio greenness index | GGR = G/R | [28] |
Green chromatic coordinate | GCC = G/(R + G + B) | [29] |
Green excess index | GEI = 2G − (R + B) | [29] |
Red chromatic coordinate | RCC = R/(R+G+B) | [30] |
Green red vegetation index | GRVI = (G − R)/(G + R) | [31] |
Hue | HUE = (B − R)/(Imax − Imin) × 60 + 120 G = Imax HUE = (B − R)/(Imax − Imin) × 60 + 240 B = Imax HUE = (G − B)/(Imax − Imin) × 60 + 340 G < B HUE = (G − B)/(Imax − Imin) × 60 other | [32] |
Irrigation Method | Irrigation Time | Irrigation Duration (H) | Irrigation Volume (mm) | Vegetation Index | Remarks |
---|---|---|---|---|---|
CK (preset point 1) | 26 March | 0 | 3.6 | 0.336 | |
20 April | 0 | 0 | 0.442 | ||
21 April | 0 | 0.3 | 0.455 | MOE | |
27 June | 0 | 7.6 | 0.382 | ||
DIFI (preset point 3) | 26 March | 8 | 11.21 | 0.339 | |
20 April | 8 | 13.77 | 0.461 | ||
21 April | 0 | 0 | 0.473 | MOE | |
26 June | 8 | 13.53 | 0.396 | ||
BIFI (preset point 5) | 25 March | 1.25 | 57.54 | 0.341 | |
18 April | 1.23 | 45.32 | 0.456 | ||
21 April | 0 | 0 | 0.467 | MOE | |
25 June | 0.9 | 48.52 | 0.387 |
Index | Preset | SOS | MOE | EOS |
---|---|---|---|---|
GGR | 1 (CK) | 83 (24 March) | 109 (19 April) | 307 (3 November) |
3 (DIFI) | 83 (24 March) | 111 (21 April) | 313 (9 November) | |
5 (BIFI) | 83 (24 March) | 111 (21 April) | 313 (9 November) | |
GCC | 1 (CK) | 83 (24 March) | 111 (21 April) | 307 (3 November) |
3 (DIFI) | 83 (24 March) | 111 (21 April) | 315 (11 November) | |
5 (BIFI) | 83 (24 March) | 111 (21 April) | 314 (10 November) | |
GEI | 1 (CK) | 83 (24 March) | 111 (21 April) | 307 (3 November) |
3 (DIFI) | 83 (24 March) | 111 (21 April) | 315 (11 November) | |
5 (BIFI) | 83 (24 March) | 111 (21 April) | 314 (10 November) | |
GRVI | 1 (CK) | 83 (24 March) | 109 (19 April) | 307 (3 November) |
3 (DIFI) | 83 (24 March) | 111 (21 April) | 313 (9 November) | |
5 (BIFI) | 83 (24 March) | 111 (21 April) | 313 (9 November) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, P.; Zheng, Y.; Lei, G.; Liu, Y.; Zhu, L.; Guo, Y.; Wang, Y.; Xi, B. Near-Earth Remote Sensing Images Used to Determine the Phenological Characteristics of the Canopy of Populus tomentosa B301 under Three Methods of Irrigation. Remote Sens. 2022, 14, 2844. https://doi.org/10.3390/rs14122844
Guan P, Zheng Y, Lei G, Liu Y, Zhu L, Guo Y, Wang Y, Xi B. Near-Earth Remote Sensing Images Used to Determine the Phenological Characteristics of the Canopy of Populus tomentosa B301 under Three Methods of Irrigation. Remote Sensing. 2022; 14(12):2844. https://doi.org/10.3390/rs14122844
Chicago/Turabian StyleGuan, Peng, Yili Zheng, Guannan Lei, Yang Liu, Lichen Zhu, Youzheng Guo, Yirui Wang, and Benye Xi. 2022. "Near-Earth Remote Sensing Images Used to Determine the Phenological Characteristics of the Canopy of Populus tomentosa B301 under Three Methods of Irrigation" Remote Sensing 14, no. 12: 2844. https://doi.org/10.3390/rs14122844