Remote Sensing-Detected Changes in Precipitation over the Source Region of Three Rivers in the Recent Two Decades
"> Figure 1
<p>The overview of the Source Region of Three Rivers.</p> "> Figure 2
<p>Precipitation (mm/month) in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2001 to 2019.</p> "> Figure 3
<p>Monthly accumulated precipitation on the SRTR (averaged from 2001 to 2019).</p> "> Figure 4
<p>Precipitation occurrence ratio in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2001 to 2019.</p> "> Figure 5
<p>Difference between precipitation (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2010 to 2019 and from 2001 to 2010 (mm/month).</p> "> Figure 6
<p>Difference in precipitation occurrence ratio between 2010 and 2019 and from 2001 to 2010 in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average.</p> "> Figure 7
<p>Difference between afternoon precipitation in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2010 to 2019 and from 2001 to 2010 (mm/month).</p> "> Figure 8
<p>Difference between nighttime precipitation in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2010 to 2019 and from 2001 to 2010 (mm/month).</p> "> Figure 9
<p>Diurnal changes in precipitation rate (mm/h) between the two decades.</p> "> Figure 10
<p>Differences between climatology of vertical water vapor (Vectors, kg/(m.s)) and its divergence (Shaded, kg/(m<sup>2</sup>.s)) in (<b>a</b>) annual average, (<b>b</b>) June-July-August (JJA) average, (<b>c</b>) March-April-May (MAM) average, (<b>d</b>) June average, (<b>e</b>) September-October-November (SON) average, (<b>f</b>) July average, (<b>g</b>) December-January-Februrary (DJF) average, and (<b>h</b>) August average from 2010 to 2019 and 2001 to 2010.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. The GSMaP Precipitation Product
2.3. ERA5 Reanalysis Data
3. Results
3.1. Climatology of Precipitation
3.2. Changes in Precipitation
3.2.1. Precipitation Amount
3.2.2. Precipitation Frequency
3.2.3. Afternoon and Nighttime Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.M.; Lu, M.M.; Yang, H.J.; Duan, A.M.; He, B.; Yang, S.; Wu, G. Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev. 2020, 7, 534–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Q.L.; Chen, D.L.; Wu, F.Y.; Pepin, N.; Cai, Z.Y.; Ahrens, B.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Elevation dependent warming over the Tibetan Plateau: Patterns, mechanisms and perspectives. Earth-Sci. Rev. 2020, 210, 103349. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.G.; Tang, W.J.; Chen, Y.Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Mao, T.X.; Wang, G.X.; Zhang, T. Impacts of climatic change on hydrological regime in the Three-River headwaters region, China, 1960–2009. Water Resour. Manag. 2016, 30, 115–131. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, J.S.; Yan, D.L. Precipitation pattern of Three River source area in Qinghai from 1964 to 2014. Agric. Res. Arid Areas 2016, 34, 282–288. [Google Scholar]
- Meng, X.; Chen, H.; Li, Z.; Zhao, L.; Zhou, B.; Lü, S.; Deng, M.; Liu, Y.; Li, G. Review of Climate Change and Its Environmental Influence on the Three-River Regions. Plateau Meteorol. 2020, 39, 1133–1143. [Google Scholar]
- Wei, Y.L.; Han, F.X.; Xie, W.X. Analysis on change characteristics of precipitation in the Three-River Headwaters Region in the past 53 years. Sci. Technol. Qinghai Agric. For. 2015, 2, 45–48. [Google Scholar]
- Dong, Y.Y.; Zhai, J.Q.; Zhao, Y.; Li, H.H.; Wang, Q.M.; Jiang, S.; Chang, H.; Ding, Z. Teleconnection patterns of precipitation in the Three-River Headwaters region, China. Environ. Res. Lett. 2020, 15, 104050. [Google Scholar] [CrossRef]
- Cai, Y.X.; Luo, S.H.; Wang, J.; Qi, D.L.; Hu, X.Y. Spatiotemporal variations in precipitation in the Three-River Headwater region from 1961 to 2019. Pratacultural Sci. 2022, 39, 10–20. [Google Scholar]
- Xi, Y.; Miao, C.Y.; Wu, J.W.; Duan, Q.Y.; Lei, X.H.; Li, H. Spatiotemporal Changes in Extreme Temperature and Precipitation Events in the Three-Rivers Headwater Region, China. J. Geophys. Res. Atmos. 2018, 123, 5827–5844. [Google Scholar] [CrossRef]
- Li, S.S.; Yao, Z.J.; Wang, R.; Liu, Z. Dryness/wetness pattern over the Three-River Headwater Region: Variation characteristic, causes, and drought risks. Int. J. Climatol. 2020, 40, 3550–3566. [Google Scholar] [CrossRef]
- Wang, T.; Sun, B.; Wang, H.J. Interannual variations of monthly precipitation and associated mechanisms over the Three River Source region in China in winter months. Int. J. Climatol. 2020, 41, 2209–2225. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, J.; Liu, R.; Zhou, J.; Liu, W. The characteristics of water vapor transport and its linkage with summer precipitation over the Source Region of the Three-River. J. Hydrometeorol. 2022, 441–455. [Google Scholar] [CrossRef]
- Meng, C.C.; Mo, X.G.; Liu, S.X.; Hu, S. Extensive evaluation of IMERG precipitation for both liquid and solid in Yellow River source region. Atmos. Res. 2021, 256, 105570. [Google Scholar] [CrossRef]
- Shi, H.Y.; Li, T.J.; Wei, J.H. Evaluation of the gridded CRU TS precipitation dataset with the point rain gauge records over the Three-River Headwaters Region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Lu, F.; Zhu, K.; Zhou, Y.Y.; Wu, Z. Comparison of different remote sensing precipitation products at multiple time scales: A case study in the source region of Three Rivers. China Rural Water Hydropower 2022, 1–14. Available online: http://kns.cnki.net/kcms/detail/42.1419.TV.20220218.1747.022.html (accessed on 10 May 2020).
- Guo, J.P.; Zhai, P.M.; Wu, L.; Cribb, M.; Li, Z.Q.; Ma, Z.Y.; Wang, F.; Chu, D.; Wang, P.; Zhang, J. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet. Int. J. Climatol. 2014, 34, 2940–2956. [Google Scholar] [CrossRef]
- Li, J. Hourly station-based precipitation characteristics over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 1560–1570. [Google Scholar] [CrossRef]
- Dirmeyer, P.A.; Schlosser, C.A.; Brubaker, K.L. Precipitation, recycling, and land memory: An integrated analysis. J. Hydrometeorol. 2009, 10, 278–288. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E.A. Atmospheric controls on soil moisture–boundary layer interactions. Part II: Feedbacks within the continental United States. J. Hydrometeorol. 2003, 4, 570–583. [Google Scholar] [CrossRef]
- Zhao, C.L.; Meng, X.H.; Li, Y.H.; Lyu, S.H.; Guo, J.; Liu, H. Impact of soil moisture on afternoon convection triggering over the Tibetan Plateau based on 1-D boundary layer model. J. Geophys. Res. Atmos. 2022, 127, e2021JD035591. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, Y.F.; Hou, B.J. Analysis of the causes for runoff evaluation in the Yellow River source region. Yellow River 2013, 35, 22–24. [Google Scholar]
- Sheng, W.P.; Zhen, L.; Xiao, Y.; Hu, Y.F. Ecological and socioeconomic effects of ecological restoration in China’s Three Rivers Source Region. Sci. Total Environ. 2019, 650, 2307–2313. [Google Scholar] [CrossRef] [PubMed]
- Kachi, M.; Kubota, T.; Aonashi, K.; Ushio, T.; Oki, R. Recent improvements in the global satellite mapping of precipitation (GSMaP). In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Okamoto, K.I.; Ushio, T.; Iguchi, T.; Takahashi, N.; Iwanami, K. The global satellite mapping of precipitation (GSMaP) project. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; Volume 5, pp. 3414–3416. [Google Scholar]
- Kentaro, T.; Saavedra, V.; Masahiro, R.; Kazuki, T.; Tomoo, U.; Takuji, K. Spatiotemporal evaluation of the gauge-adjusted global satellite mapping of precipitation at the basin scale. J. Meteorol. Soc. Jpn. 2016, 94, 185–195. [Google Scholar]
- Lu, D.K.; Yong, B. Evaluation and hydrological utility of the latest GPM IMERG v5 and GsMAP v7 precipitation products over the Tibetan Plateau. Remote Sens. 2018, 10, 2022. [Google Scholar] [CrossRef] [Green Version]
- Ning, S.W.; Song, F.; Parmeshwar, U.; Jin, J.L.; Thapa, B.R.; Ishidaira, H. Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Adv. Meteorol. 2017, 2017, 1803492. [Google Scholar] [CrossRef] [Green Version]
- Kalverla, P.C.; Duncan, J.B., Jr.; Steeneveld, G.J.; Holtslag, A. Low-level jets over the North Sea based on ERA5 and observations: Together they do better. Wind Energy Sci. Discuss. 2019, 4, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lei, Y.H.; Letu, H.S.; Shang, H.S.; Shi, J.C. Cloud cover over the Tibetan Plateau and eastern China: A comparison of ERA5 and ERA-Interim with satellite observations. Clim. Dyn. 2020, 54, 2941–2957. [Google Scholar] [CrossRef]
- Zhao, J.; Li, T.J.; Shi, K.F.; Qiao, Z.; Xia, Z.Y. Evaluation of ERA-5 precipitable water vapor data in plateau areas: A case study of the Northern Qinghai-Tibet Plateau. Atmosphere 2021, 12, 1367. [Google Scholar] [CrossRef]
- Xin, Y.F.; Liu, J.B.; Liu, X.W.; Liu, G.; Cheng, X.H.; Chen, Y.L. Reduction of uncertainties in surface heat flux over the Tibetan Plateau from ERA-Interim to ERA5. Int. J. Climatol. 2022. early view. [Google Scholar] [CrossRef]
- Shang, S.S.; Zhu, G.F.; Wei, J.H.; Li, Y.; Zhang, K.; Li, R.; Arnault, J.; Zhang, Z.; Laux, P.; Yang, Q.; et al. Associated atmospheric mechanisms for the increased cold season precipitation over the Three-River Headwaters Region from the Late 1980s. J. Clim. 2021, 34, 8033–8046. [Google Scholar] [CrossRef]
- Zhao, R.Y.; Chen, B.; Xu, X.D. Intensified moisture sources of heavy precipitation events contributed to interannual trend in precipitation over the Three-Rivers-Headwater Region in China. Front. Earth Sci. 2021, 9, 674037. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.J.; Li, J.Y.; Zhong, D.Y. Influence of the westerlies and the South Asia monsoon on water vapor transport and precipitation in the Three-River Headwaters Region during the rainy season. Adv. Water Sci. 2019, 30, 348–358. [Google Scholar]
- Zhao, D.; Zhang, L.X.; Zhou, T.J. Detectable anthropogenic forcing on the long-term changes of summer precipitation over the Tibetan Plateau. Clim. Dyn. 2022, 1–14. [Google Scholar] [CrossRef]
Year | Season | Month | ||||||
---|---|---|---|---|---|---|---|---|
period | Year | MAM | JJA | SON | DJF | Jun | Jul | Aug |
Cor | 0.629 | 0.552 | 0.438 | 0.518 | 0.805 | 0.186 | 0.485 | 0.326 |
Year | Season | Month | ||||||
---|---|---|---|---|---|---|---|---|
period | Year | MAM | JJA | SON | DJF | Jun | Jul | Aug |
Cor | 0.964 | 0.943 | 0.908 | 0.965 | 0.916 | 0.934 | 0.917 | 0.884 |
Cor | Year | MAM | JJA | SON | DJF | Jun | Jul | Aug |
---|---|---|---|---|---|---|---|---|
Pp | 0.689 | 0.752 | 0.480 | 0.697 | 0.437 | 0.195 | 0.604 | 0.611 |
Pa | 0.629 | 0.552 | 0.438 | 0.518 | 0.805 | 0.186 | 0.485 | 0.326 |
Pe | 0.964 | 0.943 | 0.908 | 0.965 | 0.916 | 0.934 | 0.917 | 0.884 |
Ppa | 0.835 | 0.834 | 0.638 | 0.743 | 0.620 | 0.586 | 0.629 | 0.646 |
Ppe | 0.818 | 0.844 | 0.562 | 0.699 | 0.589 | 0.465 | 0.599 | 0.595 |
Cor | Year | MAM | JJA | SON | DJF | Jun | Jul | Aug |
---|---|---|---|---|---|---|---|---|
Se | 0.963 | 0.946 | 0.890 | 0.959 | 0.912 | 0.916 | 0.909 | 0.929 |
Pa | 0.795 | 0.823 | 0.455 | 0.705 | 0.528 | 0.393 | 0.538 | 0.469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Deng, M.; Liu, Y.; Li, Z.; Zhao, L. Remote Sensing-Detected Changes in Precipitation over the Source Region of Three Rivers in the Recent Two Decades. Remote Sens. 2022, 14, 2216. https://doi.org/10.3390/rs14092216
Meng X, Deng M, Liu Y, Li Z, Zhao L. Remote Sensing-Detected Changes in Precipitation over the Source Region of Three Rivers in the Recent Two Decades. Remote Sensing. 2022; 14(9):2216. https://doi.org/10.3390/rs14092216
Chicago/Turabian StyleMeng, Xianhong, Mingshan Deng, Yumeng Liu, Zhaoguo Li, and Lin Zhao. 2022. "Remote Sensing-Detected Changes in Precipitation over the Source Region of Three Rivers in the Recent Two Decades" Remote Sensing 14, no. 9: 2216. https://doi.org/10.3390/rs14092216