Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications
"> Figure 1
<p>Overall architecture.</p> "> Figure 2
<p>Integration mechanism of synchronous relative position.</p> "> Figure 3
<p>Integration mechanism of the position increment condition in the presence of latency.</p> "> Figure 4
<p>Integration mechanism in the presence of latency of raw GNSS observations.</p> "> Figure 5
<p>Single-station fault detection flowchart.</p> "> Figure 6
<p>Dual-station fault detection flowchart.</p> "> Figure 7
<p>Experimental set up in test 1.</p> "> Figure 8
<p>Trajectories of vehicles in test 1. (<b>a</b>) Horizontal direction; (<b>b</b>) vertical direction.</p> "> Figure 9
<p>Velocities (NED) of vehicles in test 1. (<b>a</b>) Rover; (<b>b</b>) moving base.</p> "> Figure 10
<p>Experimental set up in test 2.</p> "> Figure 11
<p>Trajectories of the UAV and boat in test 2. (<b>a</b>) Horizontal direction; (<b>b</b>) vertical direction.</p> "> Figure 12
<p>Velocities (NED) of the UAV and boat in test 2. (<b>a</b>) UAV; (<b>b</b>) boat.</p> "> Figure 13
<p>The number of visible satellites in field tests (15° elevation mask). (<b>a</b>) Test 1; (<b>b</b>) test 2.</p> "> Figure 14
<p>Comparison of position prediction errors in two tests.</p> "> Figure 15
<p>The effects of the broadcast and sampling rates in test 1. (<b>a</b>) Fixed SRGM; (<b>b</b>) fixed BRPM.</p> "> Figure 16
<p>Comparison of relative position errors in modes 1–4 in test 1.</p> "> Figure 17
<p>Error scatterplots of modes 1 and 2 in test 1. (<b>a</b>) Horizontal direction; (<b>b</b>) vertical direction.</p> "> Figure 18
<p>Error scatterplots for modes 2 and 3 in test 1. (<b>a</b>) Horizontal direction; (<b>b</b>) vertical direction.</p> "> Figure 19
<p>Error scatterplots of modes 3 and 4 in test 1. (<b>a</b>) Horizontal direction; (<b>b</b>) vertical direction.</p> "> Figure 20
<p>Comparison of relative position error of modes 5–8 in test 2.</p> "> Figure 21
<p>Error scatterplots of relative position in test 2. (<b>a</b>) mode 5; (<b>b</b>) comparison of modes 5–8.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. RTK DGNSS Relative Positioning Algorithm
2.2. TC-GNSS/INS Integration Algorithm
2.3. Integration Mechanism of High-Rate Synchronous Relative Positions
2.4. Polynomial Prediction Algorithm for Position Increments
2.5. FDE Algorithm
3. Field Tests and Results Analysis
3.1. Analysis of the Effect of Data Broadcast Rate and Sampling Rate
3.2. Performance of Relative Positioning in a Vehicle-to-Vehicle Field Test
3.3. Performance of Relative Positioning in a UAV-to-Boat Field Test
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caveney, D. Cooperative Vehicular Safety Applications. IEEE Control Syst. Mag. 2010, 30, 38–53. [Google Scholar]
- Martin, S.; Travis, W.; Bevly, D. Performance Comparison of Single and Dual Frequency Closely Coupled GPS/INS Relative Positioning Systems. In Proceedings of the Position Location & Navigation Symposium, San Diego, CA, USA, 25–27 April 2010. [Google Scholar]
- De Ponte Müller, F. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles. Sensors 2017, 17, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, W.; Zhao, Y.; Zhou, L.; Huang, D.; Hassan, A. Fast cycle slip determination for high-rate multi-GNSS RTK using modified geometry-free phase combination. GPS Solut. 2020, 24, 42. [Google Scholar] [CrossRef]
- Travis, W.; Martin, S.; Bevly, D.M. Automated short distance vehicle following using a dynamic base RTK system. Int. J. Veh. Auton. Syst. 2011, 58, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Williamson, W.R.; Abdel-Hafez, M.F.; Rhee, I.; Song, E.; Wolfe, J.D.; Chichka, D.F.; Speyer, J.L. An Instrumentation System Applied to Formation Flight. IEEE Trans. Control Syst. Technol. 2007, 15, 75–85. [Google Scholar] [CrossRef]
- Chen, P.; Shu, L.; Ding, R.; Han, C. Kinematic single-frequency relative positioning for LEO formation flying mission. GPS Solut. 2015, 19, 525–535. [Google Scholar] [CrossRef]
- Hwang, S.S.; Speyer, J.L. Collision Detection System Based on Differential Carrier-Phase Global Positioning System Broadcasts. Water Ence Technol. 2015, 61, 1691–1698. [Google Scholar] [CrossRef] [Green Version]
- Heo, M.B.; Pervan, B. Carrier phase navigation architecture for shipboard relative GPS. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 670–679. [Google Scholar]
- Rife, J.; Khanafseh, S.; Pullen, S.; Lorenzo, D.D.; Kim, U.S.; Koenig, M.; Chiou, T.Y.; Kempny, B.; Pervan, B. Navigation, Interference Suppression, and Fault Monitoring in the Sea-Based Joint Precision Approach and Landing System. Proc. IEEE 2009, 96, 1958–1975. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. A canonical theory for short GPS baselines. Part I: The baseline precision. J. Geod. 1997, 71, 320–336. [Google Scholar] [CrossRef]
- Zhodzishsky, M.; Vorobiev, M.; Khvalkov, A.; Ashjaee, J. Real-Time Kinematic (RTK) Processing for Dual-Frequency GPS/GLONASS. In Proceedings of the 11th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1998), Nashville, TN, USA, 15–18 September 1998. [Google Scholar]
- Edwards, S.J.; Cross, P.A.; Barnes, J.B.; Betaille, D. A Methodology for benchmarking real time kinematic GPS. Surv. Rev. 1999, 35, 163–174. [Google Scholar] [CrossRef]
- Xu, P.; Shi, C.; Fang, R.; Liu, J.; Niu, X.; Zhang, Q.; Yanagidani, T. High-rate precise point positioning (PPP) to measure seismic wave motions: An experimental comparison of GPS PPP with inertial measurement units. J. Geod. 2013, 87, 361–372. [Google Scholar] [CrossRef]
- Shu, Y.; Fang, R.; Li, M.; Shi, C.; Li, M.; Liu, J. Very high-rate GPS for measuring dynamic seismic displacements without aliasing: Performance evaluation of the variometric approach. GPS Solut. 2018, 22, 121. [Google Scholar] [CrossRef]
- Comstock, S.J. Development of a Low-Latency, High Data Rate, Differential GPS Relative Positioning System for UAV Formation Flight Control; Air Force Institute of Technology: Dayton, OH, USA, 2006. [Google Scholar]
- Newby, S.; Corcoran, W. What’s New From NovAtel. In Proceedings of the 8th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1995), Palm Springs, CA, USA, 12–15 September 1995; pp. 133–140. [Google Scholar]
- Lawrence, D.G. Reference Carrier Phase Prediction for Kinematic GPS. U.S. Patent No. 5,903,236, 11 May 1999. [Google Scholar]
- Hatch, R.R.; Sharpe, R.T.; Yang, Y. GPS Navigation Using Successive Differences of Carrier-Phase Measurements. U.S. Patent No. 7,212,155, 1 May 2007. [Google Scholar]
- Zhang, L.; Lv, H.; Wang, D.; Hou, Y.; Wu, J. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output. J. Geod. 2015, 89, 641–653. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Wang, D.; Li, Q.; Wu, M. Lowlatency, highrate, highprecision relative positioning with moving base in real time. GPS Solut. 2020, 24, 56. [Google Scholar] [CrossRef]
- Alam, N.; Kealy, A.; Dempster, A.G. An INS-Aided Tight Integration Approach for Relative Positioning Enhancement in VANETs. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1992–1996. [Google Scholar] [CrossRef]
- Alam, N.; Kealy, A.; Dempster, A.G. Cooperative Inertial Navigation for GNSS-Challenged Vehicular Environments. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1370–1379. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, H.S.; Choi, K.H.; Lim, J.; Chun, S.; Lee, H.K. Adaptive GPS/INS integration for relative navigation. GPS Solut. 2016, 20, 63–75. [Google Scholar] [CrossRef]
- Remondi, B.W. Performing Centimeter-Level Surveys in Seconds with GPS Carrier Phase: Initial Results. J. Inst. Navig. 1985, 32, 386–400. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, D.; Zhang, L.; Li, Q.; Wu, J. Tightly Coupled GNSS/INS Integration with Robust Sequential Kalman Filter for Accurate Vehicular Navigation. Sensors 2020, 20, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akos, D.M.; Pini, M. Effect of Sampling Frequency on GNSS Receiver Performance. Navigation 2006, 53, 85–95. [Google Scholar] [CrossRef]
- Moschas, F.; Stiros, S. PLL bandwidth and noise in 100 Hz GPS measurements. GPS Solut. 2015, 19, 173–185. [Google Scholar] [CrossRef]
- Ebinuma, T.; Kato, T. Dynamic characteristics of very-high-rate GPS observations for seismology. Earth Planets Space 2012, 64, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Niu, X.; Shi, C. Assessment of the effect of GNSS sampling rate on GNSS/INS relative accuracy on different time scales for precision measurements. Measurement 2019, 145, 583–593. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Gæodésique 1972, 105, 279–298. [Google Scholar] [CrossRef]
BRPM | 10 | 5 | 2 | 1 | ||||
---|---|---|---|---|---|---|---|---|
Field Test | Test 1 | Test 2 | Test 1 | Test 2 | Test 1 | Test 2 | Test 1 | Test 2 |
North (m) | 0.0050 | 0.0018 | 0.0194 | 0.0022 | 0.2933 | 0.0037 | 1.2487 | 0.0068 |
East (m) | 0.0051 | 0.0017 | 0.0193 | 0.0022 | 0.2864 | 0.0035 | 0.8713 | 0.0065 |
Down (m) | 0.0058 | 0.0043 | 0.0068 | 0.0043 | 0.0094 | 0.0050 | 0.0154 | 0.0065 |
3D (m) | 0.0092 | 0.0049 | 0.0282 | 0.0053 | 0.4100 | 0.0071 | 1.5227 | 0.0115 |
Items | Mode 0 | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 |
---|---|---|---|---|---|---|
BRGM (Hz) | 10 | 10 | 1 | 1 | 1 | 1 |
BRPM (Hz) | 0 | 10 | 10 | 10 | 5 | 1 |
SRGM (Hz) | 10 | 10 | 10 | 1 | 1 | 1 |
SRGR (Hz) | 10 | 10 | 10 | 1 | 1 | 1 |
Output Rate (Hz) | 10 | 125 | 125 | 125 | 125 | 125 |
Bit Rate (bits/s) | 37,200 | 42,320 | 8840 | 8840 | 6280 | 4232 |
Statistics | Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5 | |
---|---|---|---|---|---|---|
Maximum Error (m) | North | 0.0205 | 0.0198 | 0.0973 | 0.0974 | 2.6945 |
East | 0.0231 | 0.0244 | 0.0887 | 0.0885 | 2.2124 | |
Down | 0.0384 | 0.0387 | 0.1260 | 0.1259 | 0.1257 | |
RMSE (m) | North | 0.0044 | 0.0044 | 0.0111 | 0.0158 | 0.6364 |
East | 0.0047 | 0.0047 | 0.0109 | 0.0159 | 0.4635 | |
Down | 0.0086 | 0.0087 | 0.0202 | 0.0203 | 0.0216 | |
3D | 0.0107 | 0.0108 | 0.0255 | 0.0302 | 0.7875 |
Minimal Latency (s) | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
---|---|---|---|---|---|
North | 0.0111 | 0.0150 | 0.0283 | 0.0515 | 0.0829 |
East | 0.0109 | 0.0150 | 0.0282 | 0.0520 | 0.0849 |
Down | 0.0202 | 0.0210 | 0.0229 | 0.0265 | 0.0333 |
3D | 0.0255 | 0.0299 | 0.0461 | 0.0778 | 0.1233 |
Minimal Latency (s) | 0 | 0.1 | 0.2 | 0.3 | 0.4 |
---|---|---|---|---|---|
North | 0.0111 | 0.0150 | 0.0283 | 0.0515 | 0.0829 |
East | 0.0109 | 0.0150 | 0.0282 | 0.0520 | 0.0849 |
Down | 0.0202 | 0.0210 | 0.0229 | 0.0265 | 0.0333 |
3D | 0.0255 | 0.0299 | 0.0461 | 0.0778 | 0.1233 |
Items | Mode 0 | Mode 5 | Mode 6 | Mode 7 | Mode 8 |
---|---|---|---|---|---|
BRGM (Hz) | 10 | 1 | 0.5 | 0.2 | 0.1 |
BRPM (Hz) | 0 | 1 | 1 | 1 | 1 |
SRGM (Hz) | 10 | 1 | 1 | 1 | 1 |
SRGR (Hz) | 10 | 1 | 1 | 1 | 1 |
Output Rate (Hz) | 10 | 125 | 125 | 125 | 125 |
Bit Rate (bits/s) | 37,200 | 4232 | 2372 | 1256 | 884 |
Statistics | Mode 5 | Mode 6 | Mode 7 | Mode 8 | |
---|---|---|---|---|---|
Maximum Error (m) | North | 0.0228 | 0.0282 | 0.0763 | 0.1344 |
East | 0.0272 | 0.0272 | 0.0528 | 0.0740 | |
Down | 0.0628 | 0.0628 | 0.0807 | 0.1288 | |
RMSE (m) | North | 0.0050 | 0.0069 | 0.0162 | 0.0288 |
East | 0.0065 | 0.0073 | 0.0116 | 0.0164 | |
Down | 0.0103 | 0.0126 | 0.0191 | 0.0336 | |
3D | 0.0131 | 0.0161 | 0.0276 | 0.0472 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Dong, Y.; Wang, D.; Wu, J.; Zhang, L. Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications. Remote Sens. 2022, 14, 2053. https://doi.org/10.3390/rs14092053
Li Q, Dong Y, Wang D, Wu J, Zhang L. Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications. Remote Sensing. 2022; 14(9):2053. https://doi.org/10.3390/rs14092053
Chicago/Turabian StyleLi, Qingsong, Yi Dong, Dingjie Wang, Jie Wu, and Liang Zhang. 2022. "Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications" Remote Sensing 14, no. 9: 2053. https://doi.org/10.3390/rs14092053
APA StyleLi, Q., Dong, Y., Wang, D., Wu, J., & Zhang, L. (2022). Real-Time Precise DGNSS/INS Integrated Relative Positioning with High Output Rate and Low Broadcast Rate for Kinematic-to-Kinematic Applications. Remote Sensing, 14(9), 2053. https://doi.org/10.3390/rs14092053