Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test
<p>The framework of the whole methodology.</p> "> Figure 2
<p>Geographic distribution of (<b>a</b>) the multi-year average values of annual terrestrial water yield during 1981−2018 and (<b>b</b>) its spatial anomalies.</p> "> Figure 3
<p>Temporal variabilities of annual terrestrial water yield (WY), precipitation (P), and evapotranspiration (ET) globally from 1981 to 2018. The colored dots and dash lines denote the yearly average values and the linear trends of the variables, respectively.</p> "> Figure 4
<p>Geographic distribution of significant trends in annual terrestrial water yield during 1981−2018, using the Mann-Kendal trend test, (<b>a</b>) before and (<b>b</b>) after correcting for multiple hypothesis testing. Shades of blue (red) indicate a significant increasing (decreasing) trend at α = 0.05. Grid cells with no statistical significance are shown in white.</p> "> Figure 5
<p>Significant changes in annual terrestrial water yield according to the number of grid cells globally. Darker shades indicate the confirmed increasing (decreasing) trends that remains after correcting for multiple hypothesis testing (α = 0.05), while lighter shades indicate the uncertain trends, i.e., additional significant changes that are detected when no multiple testing correction took place.</p> "> Figure 6
<p>The Theil–Sen’s slope showing the confirmed trends in annual terrestrial water yield (WY) according to the climate-plant types, which are defined by Köppen-Geiger (KG) climate zones vs. IGBP land cover type (<a href="#remotesensing-14-02009-t001" class="html-table">Table 1</a>). The box plots show lower bound (=Q1 − 1.5 LQR), lower quartile (Q1), upper quartile (Q3) and upper bound (=Q3 + 1.5 LQR) from bottom to top, where LQR = Q3 − Q1.</p> "> Figure 7
<p>Composite map of the sign of terrestrial water yield (WY), precipitation (P), and evapotranspiration (ET) trends. Colored areas indicate where WY significantly changed during 1981–2018 after correcting for multiple hypothesis testing (α = 0.05). S<sub>WY</sub>, S<sub>P</sub>, and S<sub>ET</sub> indicate the Theil–Sen’s slope of WY, P, and ET, respectively. The symbols + and − indicate a positive and negative WY (P or ET) trend during the study period, respectively.</p> "> Figure 8
<p>Frequency distribution of composite patterns of terrestrial water yield (WY), precipitation (P), and evapotranspiration (ET) trends by the climate-plant types (shown in <a href="#remotesensing-14-02009-f006" class="html-fig">Figure 6</a>) across the grid cells in which WY significantly changed during 1981–2018 after correcting for multiple hypothesis testing (α = 0.05). S<sub>WY</sub>, S<sub>P</sub>, and S<sub>ET</sub> indicate the Theil–Sen’s slope of WY, P, and ET, respectively. The symbols + and − indicate a positive and negative WY (P or ET) trend during the study period, respectively.</p> "> Figure 9
<p>Geographic distribution of dominators regulating terrestrial water yield (WY). Colored areas indicate those where WY significantly changed during 1981–2018 after correcting for multiple hypothesis testing (α = 0.05). Blue, yellow, and green indicate that WY was dominated by precipitation (P), evapotranspiration (ET), and their combined effect (Combined), respectively.</p> "> Figure 10
<p>Statistics for the dominating factors regulating terrestrial water yield (WY) by the climate-plant types (<a href="#remotesensing-14-02009-f005" class="html-fig">Figure 5</a>) across the grid cells in which WY significantly changed during 1981–2018 after correcting for multiple hypothesis testing (α = 0.05). Blue, yellow, and green indicate that WY was dominated by precipitation (P), evapotranspiration (ET), and their combined effect (Combined), respectively.</p> "> Figure 11
<p>Significant changes in annual terrestrial water yield according to the number of grid cells in different altitude. Darker shades indicate the confirmed increasing (decreasing) trends that remains after correcting for multiple hypothesis testing (α = 0.05), while lighter shades indicate the uncertain trends, i.e., additional significant changes that are detected when no multiple testing correction took place.</p> "> Figure 12
<p>Statistics for the confirmed trends of terrestrial water yield (WY) represented as the number of grid cells by the latitude. Blue and red indicate a significant increase and decrease in WY during 1981–2018 after correcting for multiple hypothesis testing (α = 0.05), respectively. The red boxes indicate the areas of interest, including parts of Canada (i), West Asia (ii), Australia (iii), Siberia (iv), the Amazon (v), and Central Africa (vi).</p> "> Figure 13
<p>Temporal variabilities of ten-year average terrestrial water yield (WY) from 1981 to 2018 in typical regions (<a href="#remotesensing-14-02009-f012" class="html-fig">Figure 12</a>). The colored boxes indicate the areas of interest, including parts of Canada (i), West Asia (ii), Australia (iii), Siberia (iv), the Amazon (v), and Central Africa (vi).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precipitation Dataset
2.2. Evapotranspiration Dataset
2.3. Climate-Plant Types
Climate Types | A (Tropical) | B (Arid) | C (Temperate) |
D (Cold) | E (Polar) | ||
Land Cover Types | Evergreen Needleleaf Forest (ENF) | Evergreen Broadleaf Forest (EBF) | Deciduous Needleleaf Forest (DNF) |
Deciduous Broadleaf Forest (DBF) | Mixed Forest (MIF) | Open Shrublands (OSH) | |
Woody Savannas, Savannas (WSA) | Grasslands (GRA) | Croplands (CRO) | |
Cropland and Natural Vegetation Mosaic (CNV) | Snow and Ice (SNI) | Barren or Sparsely Vegetated (BSV) |
2.4. Statistical Analysis Strategy
3. Results
3.1. Annual WY at the Global Scale
3.2. Inter-Annual Variability of WY
3.3. WY in Response to Variabilities of Its Components
3.4. Dominating Factors for the Changes in WY
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Díaz, M.E.; Figueroa, R.; Alonso, M.L.S.; Vidal-Abarca, M.R. Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile). Ecosyst. Serv. 2018, 31, 84–92. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and energy. Annu. Rev. Energy Env. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Tidwell, V.; Moreland, B. Mapping water consumption for energy production around the Pacific Rim. Environ. Res. Lett. 2016, 11, 094008. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, S.; Krey, V.; Huppmann, D.; Kahil, T.; McCollum, D.; Fricko, O.; Byers, E.; Gidden, M.J.; Mayor, B.; Khan, Z.; et al. Balancing clean water-climate change mitigation trade-offs. Environ. Res. Lett. 2019, 14, 014009. [Google Scholar] [CrossRef]
- Sood, M.; Singal, S.K. Development of hydrokinetic energy technology: A review. Int. J. Energy Res. 2019, 43, 5552–5571. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- IPCC Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021.
- Liao, X.L.; Xu, W.; Zhang, J.L.; Li, Y.; Tian, Y.G. Global exposure to rainstorms and the contribution rates of climate change and population change. Sci. Total Environ. 2019, 663, 644–656. [Google Scholar] [CrossRef]
- Fu, Q.; Feng, S. Responses of terrestrial aridity to global warming. J. Geo-Phys. Res. Atmos. 2014, 119, 7863–7875. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Greve, P.; Orlowsky, B.; Mueller, B.; Sheffield, J.; Reichstein, M.; Seneviratne, S.I. Global assessment of trends in wetting and drying over land. Nat. Geosci. 2014, 7, 716–721. [Google Scholar] [CrossRef]
- Wilson, K.B.; Hanson, P.J.; Mulholland, P.J.; Baldocchi, D.D.; Wullschleger, S.D. A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 2001, 106, 153–168. [Google Scholar] [CrossRef]
- Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687–688. [Google Scholar] [CrossRef]
- Gong, L.B.; Xu, C.Y.; Chen, D.L.; Halldin, S.; Chen, Y.Q.D. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin. J. Hydrol. 2006, 329, 620–629. [Google Scholar] [CrossRef]
- Liu, X.M.; Zheng, H.X.; Zhang, M.H.; Liu, C.M. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau. J. Geog. Sci. 2011, 21, 594–608. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading Water for Carbon with Biological Carbon Sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Jiang, B.; Liang, S.L. Improved vegetation greenness increases summer atmospheric water vapor over Northern China. J. Geophys. Res. Atmos. 2013, 118, 8129–8139. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z.B. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef]
- Sun, G.; McNulty, S.G.; Lu, J.; Amatya, D.M.; Liang, Y.; Kolka, R.K. Regional annual water yield from forest lands and its response to potential deforestation across the southeastern United States. J. Hydrol. 2005, 308, 258–268. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.Y.; Zhang, Z.Q.; Wei, X.H.; Steven, M.; James, V. Potential Water Yield Reduction Due to Forestation Across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.; Morán-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the Ebro Basin. Hydrol. Earth Syst. Sci. Discuss. 2011, 7, 2651–2681. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Sun, G.; Feng, X.M.; Fu, B.J. Water yield responses to climate change and variability across the North–South Transect of Eastern China (NSTEC). J. Hydrol. 2013, 481, 96–105. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour. Res. 1998, 34, 3009–3015. [Google Scholar] [CrossRef]
- Xu, Z.X.; Li, J.Y.; Liu, C.M. Long-term trend analysis for major climate variables in the Yellow River basin. Hydrol. Processes 2007, 21, 1935–1948. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Wang, H.J.; Dai, J.H.; Rutishauser, T.; Gonsamo, A.; Wu, C.Y.; Ge, Q.S. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology. J. Geophys. Res. Biogeosci. 2018, 123, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Ventura, V.; Paciorek, C.J.; Risbey, J.S. Controlling the proportion of falsely rejected hypotheses when conducting multiple tests with climatological data. J. Clim. 2004, 17, 4343–4356. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. On “Field Significance” and the false discovery rate. J. Appl. Meteorol. Clim. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- Cortés, J.; Miguel, M.; Markus, R.; Alexander, B. Accounting for multiple testing in the analysis of spatio-temporal environmental data. Environ. Ecol. Stat. 2020, 27, 293–318. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, N.C.; Losleben, M.; Hartman, M.; Chowanski, K. A Comparison of SNOTEL and GHCN/CRU Surface Temperatures with Free-Air Temperatures at High Elevations in the Western United States: Data Compatibility and Trends. J. Clim. 2005, 18, 1967–1985. [Google Scholar] [CrossRef]
- Zhao, T.B.; Fu, C.B. Comparison of products from ERA-40, NCEP-2, and CRU with station data for summer precipitation over China. Adv. Atmos. Sci. 2006, 23, 593–604. [Google Scholar] [CrossRef]
- Grotjahn, R.; Huynh, J. Contiguous US summer maximum temperature and heat stress trends in CRU and NOAA Climate Division data plus comparisons to reanalyses. Sci. Rep. 2018, 8, 11146. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes TR, H.; De Jeu RA, M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based Observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu RA, M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1884, 1, 215–226. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf Band Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Channan, S.; Channan Xu, X.Y. Half Degree Global MODIS IGBP Land Cover Types (2001–2012). 2018. Available online: http://poles.tpdc.ac.cn/en/data (accessed on 18 March 2022).
- Friedl, M.A.; Sulla-Menashe, D.; Bin Tan Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X.M. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of statistical analysis in climate research Analysis of climate variability. In Analysis of Climate Variability; von Storch, H., Navarra, A., Eds.; Springer: Berlin, Germany, 1999; pp. 11–26. [Google Scholar]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.L.; Dong, P.; Peng, J. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years. J. Geogr. Sci. 2012, 22, 1013–1033. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, S.S. Water yield variability and response to climate change across Canada. Hydrol. Sci. J. 2021, 66, 1169–1184. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Striegl, R.G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: Potential impacts on lateral export of carbon and nitrogen. Geo-Phys. Res. Lett. 2007, 34, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, S. Freezing temperature controls winter water discharge for cold region watershed. Water Resour. Res. 2019, 55, 10479–10493. [Google Scholar] [CrossRef] [Green Version]
- Greve, P.; Seneviratne, S.I. Assessment of future changes in water availability and aridity. Geo-Phys. Res. Lett. 2015, 42, 5493–5499. [Google Scholar] [CrossRef] [Green Version]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran Land. Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Khazaei, B.; Khatami, S.; Alemohammad, S.H.; Rashidi, L.; Wu, C.; Madani, K.; Aghakouchak, A. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 2019, 569, 203–217. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Southeast Australia autumn rainfall reduction: A climate-change-induced poleward shift of ocean–atmosphere circulation. J. Clim. 2013, 26, 189–205. [Google Scholar] [CrossRef]
- Ma, X.L.; Huete, A.; Moran, S.; Ponce-Campos, G.; Eamus, D. Abrupt shifts in phenology and vegetation productivity under climate extremes. J. Geophys. Res. Biogeosci. 2015, 120, 2036–2052. [Google Scholar] [CrossRef]
- Khaledi, J.; Nitschke, C.; Lane PN, J.; Penman, T.; Nyman, P. The influence of atmosphere-ocean phenomenon on water availability across temperate Australia. Water Resour. Res. 2022, 58, e2020WR029409. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.L.; Li LZ, X.; Li, Y.; Huntingford, C.; Ciais, P.; Cescatti, A.; Janssens, I.A.; Peñuelas, J.; Buermann, W.; et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 2020, 6, eaax0255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seager, R.; Naik, N.; Vecchi, G.A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 2010, 23, 4651–4668. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.; Mahecha, M.D.; Reichstein, M.; Myneni, R.B.; Chen, C.; Brenning, A. Where Are Global Vegetation Greening and Browning Trends Significant? Geophys. Res. Lett. 2021, 48, e2020GL091496. [Google Scholar] [CrossRef]
- Liu, Y.B.; Xiao, J.F.; Ju, W.M.; Xu, K.; Zhou, Y.L.; Zhao, Y.T. Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ. Res. Lett. 2016, 11, 094010. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, Y.L.; Sun, G.; Song, C.H.; Dannenberg, M.P.; Li, J.F.; Liu, N.; Zhang, K.R.; Zhan, Q.F.; Hao, L. Vegetation greening weakened the capacity of water supply to China’s South-to-North Water Diversion Project. Hydrol. Earth Syst. Sci. 2021, 25, 5623–5640. [Google Scholar] [CrossRef]
- Makarieva, A.M.; Gorshkov, V.G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 2007, 11, 1013–1033. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, L.; Chiew, F.; Fu, B.J. Understanding the impacts of climate and landuse change on water yield. Curr. Opin. Env. Sust. 2018, 33, 167–174. [Google Scholar] [CrossRef]
- Balist, J.; Malekmohammadi, B.; Jafari, H.R.; Nohegar, A.; Geneletti, D. Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Appl. Water Sci. 2022, 12, 4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Jin, J. Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test. Remote Sens. 2022, 14, 2009. https://doi.org/10.3390/rs14092009
Gao H, Jin J. Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test. Remote Sensing. 2022; 14(9):2009. https://doi.org/10.3390/rs14092009
Chicago/Turabian StyleGao, Han, and Jiaxin Jin. 2022. "Analysis of Water Yield Changes from 1981 to 2018 Using an Improved Mann-Kendall Test" Remote Sensing 14, no. 9: 2009. https://doi.org/10.3390/rs14092009