Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM
<p>The geographical location of study area. The background is a Landsat OIL image acquired in 2019 with a false color composite of bands 432.</p> "> Figure 2
<p>The flow chart of estimating glacier mass balance.</p> "> Figure 3
<p>The relationships between elevation difference and slope and maximum curvature.</p> "> Figure 4
<p>Glacier elevation changes between February 2000 and August 2019.</p> "> Figure 5
<p>The mean glacier elevation difference in each 100 m elevation bin.</p> "> Figure 6
<p>The relationship between elevation difference and slope.</p> "> Figure 7
<p>The slope distribution map of the glacier area.</p> "> Figure 8
<p>The average elevation difference and of the percentage of slope categories.</p> "> Figure 9
<p>The relationship between elevation difference and aspect.</p> "> Figure 10
<p>The aspect distribution map of glacier area.</p> "> Figure 11
<p>The average glacier elevation difference and the percentage for each aspect category in the glacier area.</p> "> Figure 12
<p>The mean glacier elevation difference, the percentage of elevation categories, the mean slope and the percentage of south slope of different elevation ranges in glacier area.</p> "> Figure 12 Cont.
<p>The mean glacier elevation difference, the percentage of elevation categories, the mean slope and the percentage of south slope of different elevation ranges in glacier area.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sets
2.2.1. Optical Images
2.2.2. Sentinel-1 Interferometric Wide Swath Images
2.2.3. SRTM DEM
2.2.4. ICESat/GLAS
2.2.5. Glacier Inventory
2.3. Methods
2.3.1. Glacier Mapping
2.3.2. INSAR DEM Generation
- Co-registration
- 2.
- Interferogram generation
- 3.
- Phase filtering and multilooking
- 4.
- Phase unwrapping
- 5.
- Terrain corrections
2.3.3. DEM Correction
2.3.4. Sentinel 1A/1B INSAR DEM Accuracy Assessment
2.3.5. Glacier Elevation Changes and Mass Balance Estimation
2.3.6. Mass Balance Uncertainty
3. Results
3.1. Accuracy Assessment for INSAR DEM Based on SRTM-C and ICESat
3.2. Glacier Elevation Changes and Glacier Mass Balance
4. Discussion
4.1. The Suitability of Sentinel-1 Data for Glacier Change
4.2. Influences of Terrain Parameters on Glacier Elevation Changes
4.2.1. Influence of Elevation on Glacier Elevation Change
4.2.2. Influence of Slope on Glacier Elevation Change
4.2.3. Influence of Aspect on Glacier Elevation Change
4.3. Influences of Debris on Glacier Changes
4.4. Comparison to Previous Mass Balance Estimates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shangguan, D.; Liu, S.; Ding, Y.; Ding, L.; Xiong, L.; Cai, D.; Li, G.; Lu, A.; Zhang, S.; Zhang, Y. Monitoring the glacier changes in the Muztag Ata and Konggur mountains, east Pamirs, based on Chinese Glacier Inventory and recent satellite imagery. Ann. Glaciol. 2006, 43, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Narama, C.; Kaeaeb, A.; Duishonakunov, M.; Abdrakhmatov, K. Spatial variability of recent glacier area changes in the Tien Shan Mountains, Central Asia, using Corona (~1970), Landsat (~2000), and ALOS (~2007) satellite data. Glob. Planet. Change 2010, 71, 42–54. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Wei, J.F.; Liu, S.Y. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, R.; Bolch, T. Glacier mapping: A review with special reference to the Indian Himalayas. Prog. Phys. Geogr. 2009, 5, 672–704. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Yao, T.; Kang, S.; Buchroithner, M.F.; Scherer, D.; Maussion, F.; Huintjes, E.; Schneider, C. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere 2019, 4, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Huggel, C.; Kääb, A. Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ. 2004, 89, 510–518. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Cao, M.; Li, X.; Chen, X.; Che, T.; Wang, J. Remote Sensing of Cryosphere; Science Press: Beijing, China, 2006; pp. 129–150. [Google Scholar]
- Jiang, H.J. High-resolution Spaceborne SAR Interferometry for DEM Generation and Updating. Ph.D. Thesis, Wuhan University, Wuhan, China, 2012. [Google Scholar]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Rocca, F. Submillimeter accuracy of InSAR time series: Experimental validation. TGRS 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Crosetto, M. Calibration and validation of SAR interferometry for dem generation. ISPRSJ Photogramm. 2003, 57, 213–227. [Google Scholar] [CrossRef]
- Kyriou, A.; Nikolakopoulos, K. Assessing the suitability of Sentinel-1 data for landslide mapping. Eur. J. Remote Sens. 2018, 51, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Marko, M.; Juha, K. Incidence angle dependence of first-year sea ice backscattering coefficient in Sentinel-1 SAR imagery over the kara sea. IEEE T. Geosci. Remote 2017, 55, 6170–6180. [Google Scholar] [CrossRef]
- Jilili, A.; Ayiguli, M.; Tang, Y. Soil salinization in the Manas River Basin in spring. Arid Zone Res. 2013, 30, 189–195. [Google Scholar]
- Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Glacier Inventory of China III. Tianshan Mountains (Interior Drainage Area of Junggar Basin in Northwest); Science Press: Beijing, China, 1986; pp. 30–111. [Google Scholar]
- Yague-Martinez, N.; Prats-Iraola, P.; Gonzalez, F.R.; Brcic, R.; Shau, R.; Geudtner, D.; Bamler, R. Interferometric processing of Sentinel-1 TOPS data. IEEE Trans. Geosci. Remote 2016, 54, 2220–2234. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.; Rossi, C.; Eineder, M.; Fritz, T.; Rao, Y.S. Framework for Fusion of Ascending and Descending Pass TanDEM-X Raw DEMs. IEEE J.-Stars 2015, 8, 3347–3355. [Google Scholar] [CrossRef] [Green Version]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Phtogramm. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Yan, L.L. Glacier Mapping and the Research of Glacier Elevation Changes Based on Multiple Data. Ph.D. Thesis, Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Ferretti, A.; Monti-Guarnieri, A.; Prati, C.; Rocca, F. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation; ESA Publications: Noordwijk, The Netherlands, 2007. [Google Scholar]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2017, 58, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, E. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Berthier, E.; Arnaud, Y.; Baratoux, D.; Vincent, C.; Rémy, F. Recent rapid thinning of the “Mer de Glace” glacier derived from satellite optical images. Geophys. Res. Lett. 2004, 31, L17401. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the pamirkarakoram-himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the qinghai–tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Kutuzov, S.; Shahgedanova, M. Glacier retreat and climatic variability in the eastern Terskey-Alatoo, inner Tien Shan between the middle of the 19th century and beginning of the 21st century. Glob. Planet. Change 2009, 69, 59–70. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Change 2015, 128, 1–13. [Google Scholar] [CrossRef]
- Rolstad, C.; Haug, T.; Denby, B. Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: Application to the western Svartisen ice cap, Norway. J. Glaciol. 2009, 55, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, T.; Romshoo, S.A.; Rashid, I. The satellite observed glacier mass changes over the Upper Indus basin during 2000–2012. Sci. Rep. 2020, 10, 41285. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, S.; Kumar, R.; Singh, A.; Randhawa, S. Surface Mass Balance Modelling at Naradu Glacier, Western Himalaya. Sci. Rep. 2021, 11, 12710. [Google Scholar] [CrossRef]
- Zhang, Y.; Yukiko., H.; Fujita, K.; Liu, S.Y.; Qiao., L. Heterogeneity in supraglacial debris thickness and its role in glacier mass. changes of the Mount Gongga. Sci. China Earth Sci. 2016, 59, 170–184. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Han, H.; Tian, B.; Zhou, J. Analysis of thickness changes and the associated driving factors on a debris covered glacier in the Tienshan Mountain. Remote Sens. Environ. 2018, 206, 63–71. [Google Scholar] [CrossRef]
- Nuimura, T.; Fujita, K.; Yamaguchi, S.; Sharma, R. Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008. J. Glaciol. 2012, 58, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Vincent, C.; Wagnon, P.; Shea, J.M.; Immerzeel, W.W.; Kraaijenbrink, P. Reduced melt on debris-covered glaciers: Investigations from Changri Nup Glacier, Nepal. Cryosphere 2016, 10, 1845–1858. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.D.; Ali, S.; Latif, Y.; Wazir, M.A.; Goheer, M.A.; Saifullah, M.; Hussain, I.; Liu, S.Y. Thin debris layers do not enhance melting of the Karakoram glaciers. Sci. Total Environ. 2020, 746, 141119. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Yao, T. High mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef]
Data | Date | Data Sources |
---|---|---|
Landsat ETM+ | 26 February 2022 | https://www.gscloud.cn/ |
Landsat 8 | 26 February 2022 | https://www.gscloud.cn/ |
Sentinel 1A/1B | 21 February 2022 | https://scihub.copernicus.eu/ |
SRTM-C | 11 August 2021 | https://lpdaac.usgs.gov/ |
ICESat/GLAS | 11 December 2021 | https://lpdaac.usgs.gov/ |
Glacier Inventory | 28 December 2021 | http://www.cryosphere.csdb.cn/ |
Sensor | Acquisition Date | Pass | Polarisation |
---|---|---|---|
Sentinel 1A | 16 August 2019 | Ascending | VV + VH |
Sentinel 1B | 10 August 2019, 22 August 2019 | Descending | VV + VH |
INASR DEM | Minimum (m) | Maximum (m) | Mean (m) | STD (m) | RMSE (m) |
---|---|---|---|---|---|
ICESat | −16.86 | 25.58 | −2.09 | 4.89 | 5.21 |
SRTM | −5.92 | 6.20 | −0.08 | 2.21 | 2.21 |
INASR DEM | Minimum (m) | Maximum (m) | Mean (m) | STD (m) | RMSE (m) |
---|---|---|---|---|---|
ICESat | −13.67 | 26.23 | 2.14 | 4.50 | 4.98 |
SRTM | −4.75 | 7.54 | −0.12 | 2.15 | 2.15 |
Elevation (m a.s.l) | dh/dt (m a−1) | Number | Mass Balance (m w.e.a−1) |
---|---|---|---|
3500–4000 | −0.04 | 52956 | −0.04 |
4000–4500 | −0.15 | 194775 | −0.17 |
4500–5000 | −0.54 | 29733 | −0.50 |
>5000 | −0.79 | 692 | −0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Wang, J.; Shao, D. Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM. Remote Sens. 2022, 14, 1506. https://doi.org/10.3390/rs14061506
Yan L, Wang J, Shao D. Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM. Remote Sensing. 2022; 14(6):1506. https://doi.org/10.3390/rs14061506
Chicago/Turabian StyleYan, Lili, Jian Wang, and Donghang Shao. 2022. "Glacier Mass Balance in the Manas River Using Ascending and Descending Pass of Sentinel 1A/1B Data and SRTM DEM" Remote Sensing 14, no. 6: 1506. https://doi.org/10.3390/rs14061506