Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific
<p>Trajectories of all tropical cyclones reaching category 1 or higher (i.e., Wmax ≥ 33 m/s) at some point on their tracks between 2000 and 2020 in the South West Pacific Basin.</p> "> Figure 2
<p>Example of 2D surface wind speed structure reconstructed using the Willoughby model (Equation (2) (f and g)) for category 1 tropical cyclone Mick (3–5 December 2009), category 3 tropical cyclone Ivy (21–28 February 2004), and category 5 tropical cyclone Winston (7 February–3 March 2016). Vertical dotted lines represent RMW, the distance r from the center of the tropical cyclone where winds reach their maximum speed (Wmax.)</p> "> Figure 3
<p>Mean and standard deviation of relative change in NDVI (<math display="inline"><semantics> <mo>Δ</mo> </semantics></math><math display="inline"><semantics> <mrow> <mi>N</mi> <mi>D</mi> <mi>V</mi> <msub> <mi>I</mi> <mrow> <mi>t</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>) (<b>a</b>,<b>b</b>) and recovery time (TR) (<b>c</b>,<b>d</b>) as a function of maximum sustained wind speed (<math display="inline"><semantics> <msub> <mi>W</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </semantics></math>). Values in bold represent the average for each TC category (SSHWS). Blue lines correspond to piecewise linear regressions with breakpoints based on the SSHWS TC classification and yellow lines correspond to piecewise linear regressions with optimized breakpoints minimizing the Bayesian Information Criterion.</p> "> Figure 4
<p>Example of relative change in NDVI observed after tropical cyclone Winston on Viti Levu in Fiji (<b>a</b>), reconstructed maximum sustained wind speed (<b>b</b>), predicted changes in NDVI (<b>c</b>) using the optimized models, and predicted recovery time (<b>d</b>). Winston severely impacted Viti Levu with wind gusts up to 78 m/s between 19 and 20 February 2016.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Forest Vegetation
2.3. Tropical Cyclones
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ESA | European Space Agency |
IBTrACS | International Best Track Archive for Climate Stewardship |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infrared Region |
MOD13Q1 | MODIS vegetation index product (NDVI and EVI) |
RMW | Radius of Maximum Wind |
SSHWS | Saffir–Simpson Hurricane Wind Scale |
TC | Tropical Cyclone |
References
- Lugo, A.E.; Applefield, M.; Douglas, J.P.; Macdonald, R.B. The impact of Hurricane David on the forests of Dominica. Can. J. For. Res. Can. Rech. For. 1983, 13, 201–211. [Google Scholar] [CrossRef]
- Basnet, K.; Likens, G.E.; Scatena, F.N.; Lugo, A.E. Hurricane Hugo: Damage to a Tropical Rain Forest in Puerto Rico. J. Trop. Ecol. 1992, 8, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Boose, E.R.; Foster, D.R.; Fluet, M. Hurricane Impacts to Tropical and Temperate Forest Landscapes. Ecol. Monogr. 1994, 64, 369–400. [Google Scholar] [CrossRef]
- Metcalfe, D.J.; Bradford, M.G.; Ford, A.J. Cyclone damage to tropical rain forests: Species- and community-level impacts. Austral Ecol. 2008, 33, 432–441. [Google Scholar] [CrossRef]
- Webb, E.L.; van de Bult, M.; Fa’aumu, S.; Webb, R.C.; Tualaulelei, A.; Carrasco, L.R. Factors Affecting Tropical Tree Damage and Survival after Catastrophic Wind Disturbance. Biotropica 2014, 46, 32–41. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, T.; Cao, H.; Li, Y.; Bin, Y.; Zhang, R.; Wang, Y.; Lian, J.; Ye, W. An old-growth subtropical evergreen broadleaved forest suffered more damage from Typhoon Mangkhut than an adjacent secondary forest. For. Ecol. Manag. 2021, 496, 119433. [Google Scholar] [CrossRef]
- Peereman, J.; Hogan, J.A.; Lin, T.-C. Assessing typhoon-induced canopy damage using vegetation indices in the Fushan Experimental Forest, Taiwan. Remote Sens. 2020, 12, 1654. [Google Scholar] [CrossRef]
- Turton, S.M. Landscape-scale impacts of Cyclone Larry on the forests of northeast Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006. Austral Ecol. 2008, 33, 409–416. [Google Scholar] [CrossRef]
- Rutledge, B.T.; Cannon, J.B.; McIntyre, R.K.; Holl, A.M.; Jack, S.B. Tree, stand, and landscape factors contributing to hurricane damage in a coastal plain forest: Post-hurricane assessment in a longleaf pine landscape. For. Ecol. Manag. 2021, 481, 118724. [Google Scholar] [CrossRef]
- Kossin, J.P.; Knapp, K.R.; Olander, T.L.; Velden, C.S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Gang, C.; Pan, S.; Tian, H.; Wang, Z.; Xu, R.; Bian, Z.; Pan, N.; Yao, Y.; Shi, H. Satellite observations of forest resilience to hurricanes along the northern Gulf of Mexico. For. Ecol. Manag. 2020, 472, 118243. [Google Scholar] [CrossRef]
- De Beurs, K.M.; McThompson, N.S.; Owsley, B.C.; Henebrrefy, G.M. Hurricane damage detection on four major Caribbean islands. Remote Sens. Environ. 2019, 229, 1–13. [Google Scholar] [CrossRef]
- Peereman, J.; Hogan, J.A.; Lin, T.-C. Disturbance frequency, intensity and forest structure modulate cyclone-induced changes in mangrove forest canopy cover. Glob. Ecol. Biogeogr. 2021, 31, 37–50. [Google Scholar] [CrossRef]
- Boose, E.R.; Serrano, M.I.; Foster, D.R. Landscape and regional impacts of hurricanes in Puerto Rico. Ecol. Monogr. 2004, 74, 335–352. [Google Scholar] [CrossRef]
- Simpson, R.H. The hurricane disaster potential scale. Weatherwise 1974, 27, 169–186. [Google Scholar]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Willoughby, H.E.; Darling, R.W.R.; Rahn, M.E. Parametricrepresentation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Weather Rev. 2006, 134, 1102–1120. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Hogan, J.A.; Chang, C.-T. Tropical Cyclone Ecology: A Scale-Link Perspective. Trends Ecol. Evol. 2020, 35, P594–P604. [Google Scholar] [CrossRef] [Green Version]
- Menkes, C.E.; Lengaigne, M.; Marchesiello, P.; Jourdain, N.C.; Vincent, E.M.; Lefèvre, J.; Chauvin, F.; Royer, J.-F. Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim. Dyn. 2012, 38, 301–321. [Google Scholar] [CrossRef]
- Jourdain, N.C.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Vincent, E.M.; Lengaigne, M.; Chauvin, F. Mesoscale Simulation of Tropical Cyclones in the South Pacific: Climatology and Interannual Variability. J. Clim. 2011, 24, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Payri, C.E.; Allain, V.; Aucan, J.; David, C.; David, V.; Dutheil, C.; Loubersac, L.; Menkes, C.; Pelletier, B.; Pestana, G. Chapter 27—New Caledonia. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: New Caledonia, France, 2019; pp. 593–618. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dyn. 2012, 36, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Muggeo, V.M.R. Segmented: An R Package to Fit Regression Models with Broken-Line Relationships. R News 2008, 8, 20–25. Available online: https://cran.r-project.org/doc/Rnews/ (accessed on 22 February 2022).
- Webb, E.L.; Seamon, J.O.; Fa’aumu, S. Frequent, low-amplitude disturbances drive high tree turnover rates on a remote, cyclone-prone Polynesian island. J. Biogeogr. 2011, 38, 1240–1252. [Google Scholar] [CrossRef]
- Franklin, J.; Drake, D.R.; McConkey, K.R.; Tonga, F.; Smith, L.B. The effects of Cyclone Waka on the structure of lowland tropical rain forest in Vava’u, Tonga. J. Trop. Ecol. 2004, 20, 409–420. [Google Scholar] [CrossRef]
- Kantha, L. Classification of hurricanes: Lessons from Katrina, Ike, Irene, Isaac and Sandy. Ocean Eng. 2013, 70, 124–128. [Google Scholar] [CrossRef]
- Bloemendaal, N.; de Moel, H.; Mol, J.M.; Bosma, P.R.M.; Polen, A.N.; Collins, J.M. Adequately reflecting the severity of tropical cyclones using the new Tropical Cyclone Severity Scale. Environ. Res. Lett. 2021, 16, 014048. [Google Scholar] [CrossRef]
- Walsh, K.J.E.; McBride, J.L.; Klotzbach, P.J.; Balachandran, S.; Camargo, S.J.; Holl, G.; Knutson, T.R.; Kossin, J.P.; Lee, T.; Sobel, A. Tropical cyclones and climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 65–89. [Google Scholar] [CrossRef]
- Lin, I.-I.; Pun, I.-F.; Lien, C.-C. “Category-6” supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 2014, 41, 8547–8553. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Kapos, V.; Varty, N.; Healey, J.R.; Tanner, E.V.J.; Kelly, D.L.; Dalling, J.W.; Burns, L.S.; Lee, D.; Sidrak, G. Hurricanes need not cause high mortality: The effects of Hurricane Gilbert on forests in Jamaica. J. Trop. Ecol. 1992, 8, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, T.; Keppel, G.; Menkes, C.; Gillespie, T.W.; Lengaigne, M.; Mangeas, M.; Rivas-Torres, G.; Birnbaum, P. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J. Ecol. 2019, 107, 279–292. [Google Scholar] [CrossRef]
- Ibanez, T.; Chave, J.; Barrabé, L.; Elodie, B.; Boutreux, T.; Trueba, S.; Vandrot, H.; Birnbaum, P. Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J. Veg. Sci. 2017, 28, 19–33. [Google Scholar] [CrossRef]
- Curran, T.J.; Gersbach, L.N.; Edwards, W.; Krockenberger, A.K. Wood density predicts plant damage and vegetative recovery rates caused by cyclone disturbance in tropical rainforest tree species of North Queensland, Australia. Austral Ecol. 2008, 33, 442–450. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhan, R.; Xu, J.; Duan, Y. Increasing Destructive Potential of Landfalling Tropical Cyclones over China. J. Clim. 2020, 33, 3731–3743. [Google Scholar] [CrossRef]
- Walker, L. Tree Damage and Recovery from Hurricane Hugo in Luquillo Experimental Forest, Puerto-Rico. Biotropica 1991, 23, 379–385. [Google Scholar] [CrossRef]
- Bellingham, P.J.; Tanner, E.V.J.; Healey, J.R. Sprouting of Trees in Jamaican Montane Forests, after a Hurricane. J. Ecol. 1994, 8, 747–758. [Google Scholar] [CrossRef]
- Van Bloem, S.J.; Murphy, P.G.; Lugo, A.E. A link between hurricane-induced tree sprouting, high stem density and short canopy in tropical dry forest. Tree Physiol. 2007, 27, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Poorter, L.; Kitajima, K.; Mercado, P.; Chubiña, J.; Melgar, I.; Prins, H.H.T. Resprouting as a persistence strategy of tropical forest trees: Relations with carbohydrate storage and shade tolerance. Ecology 2010, 91, 2613–2627. [Google Scholar] [CrossRef]
- Murphy, H.T.; Metcalfe, D.J. The perfect storm: Weed invasion and intense storms in tropical forests. Austral Ecol. 2016, 41, 864–874. [Google Scholar] [CrossRef]
- Catterall, C.P.; McKenna, S.; Kanowski, J.; Piper, S.D. Do cyclones and forest fragmentation have synergistic effects? A before-after study of rainforest vegetation structure at multiple sites. Austral Ecol. 2008, 33, 471–484. [Google Scholar] [CrossRef] [Green Version]
- Al-Khaldi, M.M.; Johnson, J.T.; Kang, Y.; Katzberg, S.J.; Bringer, A.; Kubatko, E.; Wood, D. Track-Based Cyclone Maximum Wind Retrievals Using the Cyclone Global Navigation Satellite System (CYGNSS) Mission Full DDMs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 21–29. [Google Scholar] [CrossRef]
- Dutheil, C.; Lengaigne, M.; Bador, M.; Vialard, J.; Lefèvre, J.; Jourdain, N.C.; Jullien, S.; Peltier, A.; Sultan, B.; Menkes, C. Impact of projected sea surface temperature biases on tropical cyclones projections in the South Pacific. Sci. Rep. 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
Category | Sustained Wind Speed (m/s) |
---|---|
ine 5 (major) | ≥70 |
4 (major) | 58–70 |
3 (major) | 50–58 |
2 | 43–49 |
1 | 33–42 |
Tropical Storm (TS) | 18–32 |
Tropical Depression (TD) | <17 |
Maximum Sustained Wind Speed | Frequency | Coverage (%) |
---|---|---|
≥33 m/s (Cat. 1 or higher) | At least once | 95.6 |
At least twice | 71.0 | |
At least 3 times | 33.1 | |
At least 4 times | 9.9 | |
At least 5 times | 1.0 | |
At least 6 times | 0.0 | |
≥43 m/s (Cat. 2 or higher) | At least once | 73.4 |
At least twice | 22.3 | |
At least 3 times | 2.0 | |
At least 4 times | 0.0 | |
≥50 m/s (Cat. 3 or higher) | At least once | 43.1 |
At least twice | 3.9 | |
At least 3 times | 0.0 | |
≥58 m/s (Cat. 4 or higher) | At least once | 21.3 |
At least twice | 0.3 | |
At least 3 times | 0.0 | |
≥70 m/s (Cat. 5) | At least once | 5.4 |
At least twice | 0.0 |
Model | BIC | Beakpoints | Davies Tests | Slope | |
---|---|---|---|---|---|
Best at | p-Value | ||||
SSHWS | 252.07 | 43.00 | 34.00 | <0.001 | 0.02 |
50.00 | 49.78 | <0.001 | −0.24 | ||
58.00 | 69.00 | 0.08 | −0.90 | ||
70.00 | 75.00 | <0.001 | −1.13 | ||
−1.78 | |||||
Optimized | 223.72 | 50.00 | 51.78 | <0.001 | −0.08 |
75.70 | 74.22 | <0.001 | −1.05 | ||
−7.45 |
Model | BIC | Beakpoints | Davies Tests | Slope | |
---|---|---|---|---|---|
Best at | p-Value | ||||
SSHWS | 376.03 | 43.00 | 34.00 | 0.008 | 0.49 |
50.00 | 51.22 | <0.001 | −0.10 | ||
58.00 | 69.00 | <0.001 | 4.14 | ||
70.00 | 77.00 | <0.001 | 3.64 | ||
6.35 | |||||
Optimized | 331.73 | 50.48 | 52.22 | <0.001 | 0.42 |
76.64 | 77.00 | <0.001 | 3.80 | ||
51.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delaporte, B.; Ibanez, T.; Despinoy, M.; Mangeas, M.; Menkes, C. Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sens. 2022, 14, 1245. https://doi.org/10.3390/rs14051245
Delaporte B, Ibanez T, Despinoy M, Mangeas M, Menkes C. Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sensing. 2022; 14(5):1245. https://doi.org/10.3390/rs14051245
Chicago/Turabian StyleDelaporte, Baptiste, Thomas Ibanez, Marc Despinoy, Morgan Mangeas, and Christophe Menkes. 2022. "Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific" Remote Sensing 14, no. 5: 1245. https://doi.org/10.3390/rs14051245
APA StyleDelaporte, B., Ibanez, T., Despinoy, M., Mangeas, M., & Menkes, C. (2022). Tropical Cyclone Impact and Forest Resilience in the Southwestern Pacific. Remote Sensing, 14(5), 1245. https://doi.org/10.3390/rs14051245