Potential Factors That Trigger the Suspension of Calcium Carbonate Sediments and Whiting in a Semi-Enclosed Gulf
"> Figure 1
<p>Location map and the bathymetry of the Arabian Gulf.</p> "> Figure 2
<p>(<b>a</b>–<b>f</b>) Different whiting events in the Arabian Gulf acquired using MODIS images.</p> "> Figure 3
<p>Daily averaged minimum, mean, and maximum SSTs in the Gulf during different seasons.</p> "> Figure 4
<p>Seasonal variation of SSS reproduced from Swift and Bower, 2003 [<a href="#B66-remotesensing-13-04795" class="html-bibr">66</a>]: (<b>a</b>) observed SSS in January–February (winter), (<b>b</b>) observed SSS in May–June (summer).</p> "> Figure 5
<p>Maximum wind speed at the Abu Dhabi International Airport station: (<b>a</b>) daily observed wind speed and (<b>b</b>) boxplot of wind speed.</p> "> Figure 6
<p>Framework of the methodology.</p> "> Figure 7
<p>Potential seasonal variation of aragonite based on the saturation index: (<b>a</b>) winter <math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mi mathvariant="sans-serif">Ω</mi> </mrow> </mrow> <mrow> <mi>Aragonite</mi> </mrow> </msub> </mrow> </semantics></math> and (<b>b</b>) summer <math display="inline"><semantics> <mrow> <msub> <mrow> <mrow> <mi mathvariant="sans-serif">Ω</mi> </mrow> </mrow> <mrow> <mi>Aragonite</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p>Maximum wind speeds during different whiting events in winter: (<b>a</b>–<b>f</b>) January 2016, (<b>g–l</b>) January 2017, and (<b>m–r</b>) February 2020.</p> "> Figure 9
<p>Maximum Daily Wind Speed, recorded around the coast of Abu Dhabi, overlaid with whiting records over the Arabian Gulf in: (<b>a</b>) January–December, 2020, (<b>b</b>) January–March, 2020. High winds trigger whiting, which is sustained for a few days afterwards depending on high winds.</p> "> Figure 10
<p>Maximum wind speeds during summer, including the absence and presence of whiting: (<b>a–f</b>) June 2020, (<b>g–l</b>) June 2018, and (<b>m–r</b>) June 2013.</p> "> Figure 11
<p>DT classification of whiting events based on (<b>a</b>) wind speed and (<b>b</b>) wind speed and season.</p> "> Figure 12
<p>Wind vs. SST with respect to the occurrence of whiting in the Arabian Gulf.</p> "> Figure 13
<p>DT classification of whiting events based on (<b>a</b>) wind speed and SST, (<b>b</b>) WI.</p> "> Figure 14
<p>Efficiency of WI in predicting the occurrence of whiting in the Gulf in: (<b>a</b>) January–December, 2020, (<b>b</b>) January–March, 2020. The red circles represent the initiation (triggering of whiting) and blue circles represent the continuation of whiting events following their initiation.</p> "> Figure 15
<p>MODIS satellite images and their classification outcomes: (<b>a</b>,<b>b</b>) 15 March 2003, (<b>c</b>,<b>d</b>) 25 February 2004, and (<b>e</b>,<b>f</b>) 4 April 2017.</p> "> Figure 16
<p>Relationship between WI and the extent of the whiting area.</p> "> Figure A1
<p>Whiting initiation and maximum daily wind speed recorded at different stations around the coast of (<b>a</b>) Abu Dhabi, (<b>b</b>) Qatar, and (<b>c</b>) Saudi Arabia.</p> "> Figure A2
<p>WI overlaid with whiting records over the Arabian Gulf in 2018 at different locations around the coast of (<b>a</b>) Abu Dhabi, (<b>b</b>) Qatar, and (<b>c</b>) Saudi Arabia.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Satellite Images for Whiting Exploration
2.2. Sea Surface Temperature (SST)
2.3. Sea Surface Salinity (SSS)
2.4. Wind Speed Data
3. Methodology
3.1. Carbonate System Equilibrium Model
3.2. Whiting Occurrences in the Gulf
3.3. Development of the Whiting Index
3.4. Decision Tree (DT) Classification
3.5. Whiting Extraction from Cloud-Free MODIS Images
4. Results and Discussions
4.1. CaCO3 Supersaturation and Whiting
4.2. Wind Speed and Initiation of Whiting Events
4.2.1. Wind Speed and Whiting
4.2.2. Association of Wind Speed with Whiting Events
4.3. Classification Results Based on WI
4.4. WI and Extent of Whiting
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Larson, E.B.; Mylroie, J.E. A review of whiting formation in the Bahamas and new models. Carbonates Evaporites 2014, 29, 337–347. [Google Scholar] [CrossRef]
- Cloud, P.E., Jr.; Blackmon, P.D.; Sisler, F.D.; Kramer, H.; Carpenter, J.H.; Robertson, E.C.; Sykes, L.R.; Newell, M. Environment of Calcium Carbonate Deposition West of Andros Island, Bahamas; U.S. Geological Survey Professional Papers. 1962. Available online: https://bit.ly/3DSOSNi (accessed on 16 August 2021).
- Bustos-Serrano, H.; Morse, J.W.; Millero, F.J. The formation of whitings on the Little Bahama Bank. Mar. Chem. 2009, 113, 1–8. [Google Scholar] [CrossRef]
- Shinn, E.A.; Steinen, R.P.; Lidz, B.H.; Halley, R.B. Bahamian Whitings—No Fish Story. Am. Assoc. Pet. Geol. Bull. 1985, 69, 307. [Google Scholar]
- Purkis, S.; Cavalcante, G.; Rohtla, L.; Oehlert, A.M.; Harris, P.; Swart, P.K. Hydrodynamic control of whitings on Great Bahama Bank. Geology 2017, 45, 939–942. [Google Scholar] [CrossRef]
- Acker, J.G.; Brown, C.W.; Hine, A.C.; Armstrong, E.; Kuring, N. Satellite remote sensing observations and aerial photography of storm-induced neritic carbonate transport from shallow carbonate platforms. Int. J. Remote Sens. 2002, 23, 2853–2868. [Google Scholar] [CrossRef]
- Turpin, M.; Emmanuel, L.; Reijmer, J.J.G.; Renard, M. Whiting-related sediment export along the Middle Miocene carbonate ramp of Great Bahama Bank. Int. J. Earth Sci. 2011, 100, 1875–1893. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Hu, C.; Robbins, L. Whiting events in SW Florida coastal waters: A case study using MODIS medium-resolution data. Remote Sens. Lett. 2014, 5, 539–547. [Google Scholar] [CrossRef]
- Long, J.S.; Hu, C.; Wang, M. Long-term spatiotemporal variability of southwest Florida whiting events from MODIS observations. Int. J. Remote Sens. 2018, 39, 906–923. [Google Scholar] [CrossRef]
- Long, J.S.; Hu, C.; Robbins, L.L.; Byrne, R.H.; Paul, J.H.; Wolny, J.L. Optical and biochemical properties of a southwest Florida whiting event. Estuar. Coast. Shelf Sci. 2017, 196, 258–268. [Google Scholar] [CrossRef]
- Sondi, I.; Juračić, M. Whiting events and the formation of aragonite in Mediterranean karstic marine lakes: New evidence on its biologically induced inorganic origin. Sedimentology 2010, 57, 85–95. [Google Scholar] [CrossRef]
- Thompson, J.B. Microbial Whitings. In Microbial Sediments; Riding, R., Awramik, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 250–260. [Google Scholar]
- Brunskill, G.J.; Ludlam, S.D. Fayetteville Green Lake, New York. I. Physical and Chemical Limnology. Limnol. Oceanogr. 1969, 14, 817–829. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Watson, S.B.; Rastin, S.; Gould, J. Long term water clarity changes in North America’s Great Lakes from multi-sensor satellite observations. Limnol. Oceanogr. 2015, 60, 1976–1995. [Google Scholar] [CrossRef]
- Effler, S.W.; Perkins, M.G.; Greer, H.; Johnson, D.L. Effect of “Whiting” on Optical Properties and Turbidity in Owasco Lake, New York. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 189–196. [Google Scholar] [CrossRef]
- Barbiero, R.P.; Tuchman, M.L.; Millard, E.S. Post-dreissenid increases in transparency during summer stratification in the offshore waters of Lake Ontario: Is a reduction in whiting events the cause? J. Great Lakes Res. 2006, 32, 131–141. [Google Scholar] [CrossRef]
- Hodell, D.A.; Schelske, C.L.; Fahnenstiel, G.L.; Robbins, L.L. Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol. Oceanogr. 1998, 43, 187–199. [Google Scholar] [CrossRef]
- Peng, F.; Effler, S.W. Characterizations of the light-scattering attributes of mineral particles in Lake Ontario and the effects of Whiting. J. Great Lakes Res. 2011, 37, 672–682. [Google Scholar] [CrossRef]
- Effler, S.W. Importance of Whiting As a Component of Raw Water Turbidity. J. Am. Water Work. Assoc. 1987, 79, 80–82. [Google Scholar] [CrossRef]
- Wells, A.J.; Illing, L.V. Present-day precipitation of calcium carbonate in the persian gulf. In Developments in Sedimentology; Elsevier: Amsterdam, The Netherlands, 1964; Available online: https://www.jstor.org/stable/73293 (accessed on 16 August 2021).
- Shanableh, A.; Al-Ruzouq, R.; Al-Khayyat, G. Assessing the spatial and temporal capacity of a semi-enclosed gulf to absorb and release CO2 Using GIS and Remote Sensing. In Proceedings of the Global Civil Engineering Conference, Kuala Lumpur, Malaysia, 25–28 July 2017; pp. 1161–1173. [Google Scholar]
- Shanableh, A.; Al-Ruzouq, R.; Gibril, M.B.A.; Flesia, C.; AL-Mansoori, S. Spatiotemporal mapping and monitoring of whiting in the semi-enclosed Gulf using Moderate Resolution Imaging Spectroradiometer (MODIS) time series images and a generic ensemble tree-based model. Remote Sens. 2019, 11, 1193. [Google Scholar] [CrossRef] [Green Version]
- Morse, J.W.; He, S. Influence of T, S and PCO2 on the homogeneous nucleation of calcium carbonate from seawater. Implications for whiting formation. Mar. Chem. 1993, 41, 291–298. [Google Scholar] [CrossRef]
- Black, M. The Precipitation of Calcium Carbonate on the Great Bahama Bank. Geol. Mag. 1933, 70, 455–466. [Google Scholar] [CrossRef]
- Friedman, G.M. Biochemical and ultrastructural evidence for the origin of whitings: A biologically induced calcium carbonate precipitation mechanism: Comment and reply. Geology 1993, 21, 287–288. [Google Scholar] [CrossRef]
- Shinn, E.A.; Steinen, R.P.; Lidz, B.H.; Swart, P.K. Whitings, a Sedimentologic Dilemma. J. Sediment. Petrol. 1989, 59, 147–161. [Google Scholar] [CrossRef]
- Robbins, L.L.; Blackwelder, P.L. Biochemical and ultrastructural evidence for the origin of whiting: A biologically induced calcium carbonate precipitation mechanism. Geology 1992, 20, 464–468. [Google Scholar] [CrossRef]
- Robbins, L.L.; Yates, K.K.; Shinn, G.; Blackwelder, P. Whiting on the great Bahama bank: A microscopic solution to a macroscopic mystery. Bahamas J. Sci. 1996, 4, 2–6. [Google Scholar]
- Kendall, C.G.S.C.; Shinn, G.; Janson, X. Holocene Cyanobacterial Mats and Lime Muds: Links to Middle East Carbonate Source Rock Potential. In Proceedings of the AAPG/SEPM Annual Meeting, Long Beach, CA, USA, 1–4 April 2007. [Google Scholar]
- Yates, K.K.; Robbins, L.L. Production of carbonate sediments by a unicellular green alga. Am. Mineral. 1998, 83, 1503–1509. [Google Scholar] [CrossRef]
- Boss, S.K.; Neumann, A.C. Physical versus chemical processes of “whiting” formation in the Bahamas. Carbonates Evaporites 1993, 8, 135–148. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Zimmerman, R.C.; Burdige, D.J. Optics and remote sensing of Bahamian carbonate sediment whitings and potential relationship to wind-driven Langmuir circulation. Biogeosciences 2009, 6, 487–500. [Google Scholar] [CrossRef] [Green Version]
- Robbins, L.L.; Tao, Y.; Evans, C.A. Temporal and spatial distribution of whitings on Great Bahama Bank and a new lime mud budget. Geology 1997, 25, 947–950. [Google Scholar] [CrossRef]
- Morse, J.W.; Gledhill, D.K.; Millero, F.J. Caco3 precipitation kinetics in waters from the great Bahama bank: Implications for the relationship between bank hydrochemistry and whitings. Geochim. Cosmochim. Acta 2003, 67, 2819–2826. [Google Scholar] [CrossRef]
- Rossmann, R. Inorganic Chemistry of Particulate Matter from the Nearshore Zone of Lake Michigan. J. Great Lakes Res. 1980, 6, 348–352. [Google Scholar] [CrossRef]
- Strong, A.E.; Eadie, B.J. Satellite observations of calcium carbonate precipitation in the Great Lakes. Limnol. Ocean. 1978, 23, 877–887. [Google Scholar] [CrossRef]
- Thompson, J.B.; Schultze-Lam, S.; Beveridge, T.J.; Des Marais, D.J. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnol. Oceanogr. 1997, 42, 133–141. [Google Scholar] [CrossRef]
- Thompson, J.B.; Ferris, F.G. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 1990, 18, 995–998. [Google Scholar] [CrossRef]
- Thompson, J.B.; Ferris, F.G.; Smith, D.A. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 1990, 5, 52–75. [Google Scholar] [CrossRef]
- Weidemann, A.D.; Bannister, T.T.; Effler, S.W.; Johnson, D.L. Particulate and optical properties during CaCO3 precipitation in Otisco Lake. Limnol. Oceanogr. 1985, 30, 1078–1083. [Google Scholar] [CrossRef]
- Hodell, D.A.; Schelske, C.L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 1998, 43, 200–214. [Google Scholar] [CrossRef]
- Effler, S.W.; Field, S.D.; Quirk, M. The seasonal cycle of inorganic carbon species in Cazenovia Lake, New York, 1977. Freshw. Biol. 1982, 12, 139–147. [Google Scholar] [CrossRef]
- Effler, S.W. Carbonate Equilibria and the Distribution of Inorganic Carbon in Saginaw Bay. J. Great Lakes Res. 1984, 10, 3–14. [Google Scholar] [CrossRef]
- Brunskill, G.J. Fayetteville Green Lake, New York. II. Precipitation and Sedimentation of Calcite in a Meromictic Lake with Laminated Sediments. Limnol. Oceanogr. 1969, 14, 830–847. [Google Scholar] [CrossRef]
- Effler, S.W.; Johnson, D.L. Calcium Carbonate Precipitation and Turbidity Measurements in Otisco Lake, New York. J. Am. Water Resour. Assoc. 1987, 23, 73–79. [Google Scholar] [CrossRef]
- Cristini, P.A.; Tietze, E.; De Francesco, C.G.; Martínez, D.E. Water geochemistry of shallow lakes from the southeastern Pampa plain, Argentina and their implications on mollusk shells preservation. Sci. Total Environ. 2017, 603–604, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Schelske, C.L. Historical nutrient enrichment of Lake Ontario: Paleolimnological evidence. Can. J. Fish. Aquat. Sci. 1991, 48, 1529–1538. [Google Scholar] [CrossRef]
- Plée, K.; Pacton, M.; Ariztegui, D. Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva, Switzerland). Geomicrobiol. J. 2010, 27, 391–399. [Google Scholar] [CrossRef]
- Nouchi, V.; Kutser, T.; Wüest, A.; Müller, B.; Odermatt, D.; Baracchini, T.; Bouffard, D. Resolving biogeochemical processes in lakes using remote sensing. Aquat. Sci. 2019, 81, 27. [Google Scholar] [CrossRef] [Green Version]
- Shanableh, A.; Imteaz, M.; Hamad, K.; Omar, M.; Merabtene, T.; Siddique, M. Potential impact of global warming on whiting in a semi-enclosed gulf. Int. J. Glob. Warm. 2017, 13, 411–425. [Google Scholar] [CrossRef]
- Curl, H.; Hill, M.N. The Sea: Ideas and Observations on Progress in the Study of the Seas. Ecology 1964, 45, 664. [Google Scholar] [CrossRef]
- Alsharhan, A.S.; Kendall, C.G.S.C. Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth-Sci. Rev. 2003, 61, 191–243. [Google Scholar] [CrossRef]
- Kendall, C. Geomorphology of a recent shallow-water carbonate province: Khor Al Bazam, Trucial Coast, southwest Persian Gulf. Geol. Soc. Am. Bull. 1969, 80, 865–892. [Google Scholar] [CrossRef]
- Evans, G. The Arabian Gulf: A Modern Carbonate-evaporite factory; a review. J. Iber. Geol. An Int. Publ. Earth Sci. 1995, 19, 61–96. [Google Scholar]
- Kinsman, D.J.J. The Persian Gulf (Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea). Sediment. Geol. 1975, 13, 234–235. [Google Scholar] [CrossRef]
- Noori, R.; Tian, F.; Berndtsson, R.; Abbasi, M.R.; Naseh, M.V.; Modabberi, A.; Soltani, A.; Kløve, B. Recent and future trends in sea surface temperature across the persian gulf and gulf of Oman. PLoS ONE 2019, 14, e0212790. [Google Scholar] [CrossRef]
- Alosairi, Y.; Alsulaiman, N.; Rashed, A.; Al-Houti, D. World record extreme sea surface temperatures in the northwestern Arabian/Persian Gulf verified by in situ measurements. Mar. Pollut. Bull. 2020, 161, 111766. [Google Scholar] [CrossRef]
- NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Photosynthetically Available Radiation Data; 2018 Reprocessing. Available online: https://go.nasa.gov/3DTw1kV (accessed on 16 August 2021).
- Sheppard, C.; Loughland, R. Coral mortality and recovery in response to increasing temperature in the southern Arabian Gulf. Aquat. Ecosyst. Health Manag. 2002, 5, 395–402. [Google Scholar] [CrossRef]
- Sheppard, C.; Al-Husiani, M.; Al-Jamali, F.; Al-Yamani, F.; Baldwin, R.; Bishop, J.; Benzoni, F.; Dutrieux, E.; Dulvy, N.K.; Durvasula, S.R.V.; et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 2010, 60, 13–38. [Google Scholar] [CrossRef]
- Buchanan, J.R.; Krupp, F.; Burt, J.A.; Feary, D.A.; Ralph, G.M.; Carpenter, K.E. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf. Mar. Pollut. Bull. 2016, 105, 480–488. [Google Scholar] [CrossRef]
- Hereher, M.E. Assessment of climate change impacts on sea surface temperatures and sea level rise—The Arabian Gulf. Climate 2020, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Johns, W.E.; Jacobs, G.A.; Kindle, J.C.; Murray, S.P.; Carron, M. Arabian Marginal Seas and Gulfs; University of Miami RSMAS Technical Report. 1999. Available online: https://bit.ly/3DVZNWj (accessed on 16 August 2021).
- Naser, H. Marine Ecosystem Diversity in the Arabian Gulf: Threats and Conservation. In Biodiversity—The Dynamic Balance of the Planet; Grillo, O., Ed.; InTech Publishing: Rijeka, Croatia, 2014; pp. 297–328. [Google Scholar]
- Hassanzadeh, S.; Hosseinibalam, F.; Rezaei-Latifi, A. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian Gulf. Appl. Math. Model. 2011, 35, 1512–1537. [Google Scholar] [CrossRef]
- Swift, S.A.; Bower, A.S. Formation and circulation of dense water in the Persian/Arabian Gulf. J. Geophys. Res. Ocean. 2003, 108, 3004. [Google Scholar] [CrossRef]
- Perrone, T.J. Winter Shamal in the Persian Gulf; Technical Report 79-06; Naval Environmental Prediction Research Facility: Monterey, CA, USA, 1979; p. 180. [Google Scholar]
- Thoppil, P.G.; Hogan, P.J. Persian Gulf response to a wintertime shamal wind event. Deep. Res. Part I Oceanogr. Res. Pap. 2010, 57, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.C.M.; Illing, L.V. Holocene Intertidal Calcium Carbonate Cementation, Qatar, Persian Gulf. Carbonate Diagenes. 2009, 12, 52–53. [Google Scholar] [CrossRef]
- Purser, B.H.; Seibold, E. The principal environmental factors influencing Holocene sedimentation and diagenesis in the Persian Gulf. In The Persian Gulf; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–9. [Google Scholar]
- Westphal, H.; Riegl, B.; Eberli, G.P. Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters: The Bahamas, Belize and the Persian/Arabian Gulf; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK, 2010. [Google Scholar]
- Shanableh, A.; Merabtene, T.; Omar, M.; Imteaz, M. Impact of surface ocean acidification on the CO2 absorption rate. Int. J. Glob. Warm. 2011, 3, 163–172. [Google Scholar] [CrossRef]
- Lueker, T.J.; Dickson, A.G.; Keeling, C.D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 2000, 70, 105–119. [Google Scholar] [CrossRef]
- Millero, F.J. Thermodynamics of the carbon dioxide system in the oceans. Geochim. Cosmochim. Acta 1995, 59, 661–677. [Google Scholar] [CrossRef]
- Mucci, A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. Am. J. Sci. 1983, 283, 780–799. [Google Scholar] [CrossRef]
- Lawson, R.; Anderson, M.A. Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake. Water Res. 2007, 41, 4457–4467. [Google Scholar] [CrossRef]
- Alosairi, Y.; Imberger, J.; Falconer, R.A. Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res. Ocean. 2011, 116, C03029. [Google Scholar] [CrossRef]
- Rakib, F.; Al-Ansari, E.M.A.S.; Husrevoglu, Y.S.; Yigiterhan, O.; Al-Maslamani, I.; Aboobacker, V.M.; Vethamony, P. Observed variability in physical and biogeochemical parameters in the central Arabian Gulf. Oceanologia 2021, 63, 227–237. [Google Scholar] [CrossRef]
- Al-Ansari, E.M.A.S.; Rowe, G.; Abdel-Moati, M.A.R.; Yigiterhan, O.; Al-Maslamani, I.; Al-Yafei, M.A.; Al-Shaikh, I.; Upstill-Goddard, R. Hypoxia in the central Arabian Gulf Exclusive Economic Zone (EEZ) of Qatar during summer season. Estuar. Coast. Shelf Sci. 2015, 159, 60–68. [Google Scholar] [CrossRef]
- Kämpf, J.; Sadrinasab, M. The circulation of the Persian Gulf: A numerical study. Ocean Sci. 2006, 2, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Berhane, T.M.; Lane, C.R.; Wu, Q.; Autrey, B.C.; Anenkhonov, O.A.; Chepinoga, V.V.; Liu, H. Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sens. 2018, 10, 580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, B.; Seeni, M.I.; Kalantar, B. Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility Maps. In Laser Scanning Applications in Landslide Assessment; Springer International Publishing: Cham, Switzerland, 2017; pp. 193–232. [Google Scholar]
- da Silva Junior, C.A.; Nanni, M.R.; de Oliveira-Júnior, J.F.; Cezar, E.; Teodoro, P.E.; Delgado, R.C.; Shiratsuchi, L.S.; Shakir, M.; Chicati, M.L. Object-based image analysis supported by data mining to discriminate large areas of soybean. Int. J. Digit. Earth 2019, 12, 270–292. [Google Scholar] [CrossRef]
- Bisquert, M.; Bégué, A.; Deshayes, M. Object-based delineation of homogeneous landscape units at regional scale based on modis time series. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 72–82. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Dyrssen, D. Alkalinity and total carbonate in the Arabian Sea. Carbonate depletion in the Red Sea and Persian Gulf. Mar. Chem. 1994, 47, 195–202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanableh, A.; Al-Ruzouq, R.; Gibril, M.B.A.; Khalil, M.A.; AL-Mansoori, S.; Yilmaz, A.G.; Imteaz, M.A.; Flesia, C. Potential Factors That Trigger the Suspension of Calcium Carbonate Sediments and Whiting in a Semi-Enclosed Gulf. Remote Sens. 2021, 13, 4795. https://doi.org/10.3390/rs13234795
Shanableh A, Al-Ruzouq R, Gibril MBA, Khalil MA, AL-Mansoori S, Yilmaz AG, Imteaz MA, Flesia C. Potential Factors That Trigger the Suspension of Calcium Carbonate Sediments and Whiting in a Semi-Enclosed Gulf. Remote Sensing. 2021; 13(23):4795. https://doi.org/10.3390/rs13234795
Chicago/Turabian StyleShanableh, Abdallah, Rami Al-Ruzouq, Mohamed Barakat A. Gibril, Mohamad Ali Khalil, Saeed AL-Mansoori, Abdullah Gokhan Yilmaz, Monzur Alam Imteaz, and Cristina Flesia. 2021. "Potential Factors That Trigger the Suspension of Calcium Carbonate Sediments and Whiting in a Semi-Enclosed Gulf" Remote Sensing 13, no. 23: 4795. https://doi.org/10.3390/rs13234795