Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China
"> Figure 1
<p>Study area. (<b>a</b>) Elevation; (<b>b</b>) vegetation types.</p> "> Figure 2
<p>Technical flowchart of the impact assessment of human factors on vegetation dynamics. <span class="html-italic">NDVI<sub>obs</sub></span>, <span class="html-italic">NDVI<sub>pre</sub></span>, and <span class="html-italic">NDVI<sub>res</sub></span> represent observed NDVI, predicted NDVI based on natural factors, and NDVI affected by human activities, respectively.</p> "> Figure 3
<p>Changes in vegetation NDVI from 1982–2018. (<b>a</b>) Spatial patterns of average NDVI; (<b>b</b>) annual change trends; (<b>c</b>) types of change patterns and (<b>d</b>) percentage changes of NDVI for different vegetation types. The legend of (<b>d</b>) is the same as that of (<b>c</b>). XJ: Xinjiang; CP: crop; FT: forest; SB: shrub; GL: grassland; AV: alpine vegetation; SV: sparse vegetation.</p> "> Figure 4
<p>Interannual change of NDVI during the growing season in Xinjiang from 1982 to 2018. The linear trend (red dashed line) is based on Sen’s trend estimation, and the nonlinear trend (blue solid line) is fitted with LOWESS. In the calculation of LOWESS, the smoother span is set as 0.5.</p> "> Figure 5
<p>Change trends of <span class="html-italic">NDVI<sub>res</sub></span> from 2000–2018. (<b>a</b>) Spatial pattern of <span class="html-italic">NDVI<sub>res</sub></span>; (<b>b</b>) annual change trends; (<b>c</b>) types of change trends and (<b>d</b>) percentage changes of different vegetation types. The legend of (<b>d</b>) is the same as that of (<b>c</b>). XJ: Xinjiang; CP: crop; FT: forest; SB: shrub; GL: grassland; AV: alpine vegetation; and SV: sparse vegetation.</p> "> Figure 6
<p>The interannual changes of <span class="html-italic">NDVI<sub>res</sub></span> from 2000 to 2018. The black line: the average value of <span class="html-italic">NDVI<sub>res</sub></span>; the green line: the positive value of <span class="html-italic">NDVI<sub>res</sub></span>; the red line: the negative value of <span class="html-italic">NDVI<sub>res</sub></span>.</p> "> Figure 7
<p>The interannual changes of <span class="html-italic">NDVI<sub>res</sub></span> for different types of vegetation from 2000 to 2018. (<b>a</b>) crop; (<b>b</b>) forest; (<b>c</b>) shrub; (<b>d</b>) grassland; (<b>e</b>) alpine vegetation; (<b>f</b>) sparse vegetation. The black line: the average value of <span class="html-italic">NDVI<sub>res</sub></span>; the green line: the positive value of <span class="html-italic">NDVI<sub>res</sub></span>; the red line: the negative value of <span class="html-italic">NDVI<sub>res</sub></span>.</p> "> Figure 8
<p>The anthropogenic dominant factor for the increase (<b>a</b>) and decrease (<b>b</b>) of NDVI for each county in Xinjiang.</p> "> Figure 9
<p>The relative contribution of human activities for the increase (<b>a</b>–<b>f</b>) and decrease (<b>g</b>–<b>l</b>) of NDVI for each county in Xinjiang.</p> "> Figure 10
<p>Spatial distributions of (<b>a</b>) the Hurst exponent values and (<b>b</b>) the evolutionary trends of anthropogenic impacts on vegetation dynamics.</p> "> Figure 11
<p>Percentage statistics of the evolutionary trends of anthropogenic impacts on vegetation dynamics. (<b>a</b>) Xinjiang; (<b>b</b>) crop; (<b>c</b>) forest; (<b>d</b>) shrub; (<b>e</b>) grassland; (<b>f</b>) alpine vegetation; (<b>g</b>) sparse vegetation. The legend is the same as that of <a href="#remotesensing-13-04651-f008" class="html-fig">Figure 8</a>b.</p> "> Figure 12
<p>Change trend of human factors in Xinjiang from 2000 to 2018. (<b>a</b>) population, cultivated rea and GDP of primary industry; (<b>b</b>) livestock number, agricultural population and animal husbandry population.</p> "> Figure 13
<p>Major land-use changes in Xinjiang during the periods of 2000–2018. UL: unused land; GL: grassland; CL: cultivated land; FL: forest land; BL: built-up land; WA: water area.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.2.1. NDVI Dataset
2.2.2. Meteorological Dataset
2.2.3. Soil Moisture Dataset
2.2.4. Other Data
2.3. Methods
2.3.1. Geographical Detector Method
- (1)
- Index selection and grading: previous studies have shown that natural factors such as temperature, precipitation [22,32], solar radiation [15], soil moisture [4,53], and terrain [52] are considered to have important impacts on vegetation. Eleven indicators were systematically selected based on the principles of representativity, scientific rigor, quantifiability, and availability, to detect the influence of natural factors on changes to the NDVI in Xinjiang (Table 2). Using the natural breakpoint method [52,54], the average annual precipitation, average annual temperature, solar radiation, specific humidity, soil moisture, and elevation were divided into six classes, whereas the slope and aspect dimensions were divided into nine and ten categories, respectively.
- (2)
- Information extraction: According to the area of Xinjiang, 16,600 random sampling point files were generated in GIS software based on 10 km × 10 km grids [52]. According to the spatial location, the vegetation NDVI and natural factor grading data of the sampling points were then correlated to generate a property sheet. Finally, the quantitative relationship between the corresponding NDVI value and each index was obtained.
- (3)
- Geographical detector model: The factor detection module can be used to detect the interpretation degree of the spatial differentiation of property Y by factor X. The degree of spatial association between the natural factor (X) and the NDVI (Y) can be measured by the q-statistic. The calculation of the q-statistic was completed using geographic detector model software (http://www.geodetector.cn/, accessed on 20 April 2020). The model formula is as follows:
2.3.2. The Estimation of Sen’s Slope
2.3.3. Mann–Kendall Significance Test
2.3.4. Residual Analysis
2.3.5. Stepwise Multiple Regression Model
2.3.6. Hurst Exponent
3. Results
3.1. Spatiotemporal Changes in the NDVI
3.2. Spatiotemporal Characteristics of Anthropogenic Impacts on Vegetation Dynamics
3.3. Driving Analysis of Anthropogenic Impacts on Vegetation Dynamics
3.4. Evolution Trend of Anthropogenic Impacts on Vegetation Dynamics
4. Discussion
4.1. Relationship between Anthropogenic Activities and Vegetation Changes
4.2. Evolutionary Trend of Anthropogenic Impacts
4.3. Potential Applications and Limitations
5. Conclusions
- (1)
- From 1982 to 2018, the overall trend of vegetation in Xinjiang gradually improved, and the vegetation dynamics mainly significantly improved (57.09% of the vegetated areas). The changes to all the vegetation types showed a greening trend, especially for crops.
- (2)
- From 2000 to 2018, the anthropogenic effects of vegetation changes in Xinjiang mainly included positive impact increases. Human activities promoted the continuous increase in the NDVI of various vegetation types, especially crops, shrubs, and sparse vegetation. Both the positive and negative impacts of human activities increased over the study period, and the growth rate of the positive influence was higher than that of the negative influence.
- (3)
- The cultivated area, GDP of primary industry, and population are the main anthropogenic factors driving the increase in vegetation NDVI, especially the cultivated area, which dominated the increase in NDVI in 30.34% of the counties. The livestock number, agricultural population, and animal husbandry population are the main anthropogenic factors driving the decrease in NDVI, especially the animal husbandry population, which dominated the decrease in NDVI in 23.60% of the counties.
- (4)
- The evolutionary trend of the anthropogenic impact on vegetation dynamics in Xinjiang will be dominated by anti-persistence, thereby mainly showing that the positive impacts continued to increase. The evolutionary trend of anthropogenic influences on crops, shrubs, grasslands, and alpine vegetation mainly show that positive impacts will continue to increase, while forests and sparse vegetation will mainly experience increasing-to-decreasing positive impacts.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franklin, J.; Serra-Diaz, J.M.; Syphard, A.D.; Regan, H.M. Global change and terrestrial plant community dynamics. Proc. Natl. Acad. Sci. USA 2016, 113, 3725–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Gelfand, I.; Zenone, T.; Jasrotia, P.; Chen, J.; Hamilton, S.K.; Robertson, G.P. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl. Acad. Sci. USA 2011, 108, 13864–13869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Huang, S.; Xie, Y.; Wang, H.; Huang, Q.; Leng, G.; Li, P.; Wang, L. Spatial-temporal changes in vegetation cover in a typical semi-humid and semi-arid region in China: Changing patterns, causes and implications. Ecol. Indic. 2019, 98, 462–475. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Lioubimtseva, E. A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environ. Earth Sci. 2015, 73, 719–729. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, S.; Chen, J.; Lü, M. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Du, J.; Quan, Z.; Fang, S.; Liu, C.; Wu, J.; Fu, Q. Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environ. Sci. Pollut. Res. 2020, 27, 1144–1159. [Google Scholar] [CrossRef]
- Niu, Q.; Xiao, X.; Zhang, Y.; Qin, Y.; Dang, X.; Wang, J.; Zou, Z.; Doughty, R.B.; Brandt, M.; Tong, X.; et al. Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degrad. Dev. 2019, 30, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Shao, L.; Zhao, M.; Zhang, X.; Zhang, D. Grassland conservation programs, vegetation rehabilitation and spatial dependency in Inner Mongolia, China. Land Use Policy 2017, 64, 429–439. [Google Scholar] [CrossRef]
- Qi, X.; Jia, J.; Liu, H.; Lin, Z. Relative importance of climate change and human activities for vegetation changes on China’s silk road economic belt over multiple timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Li, Y. Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecol. Indic. 2018, 95, 370–378. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Lamchin, M.; Lee, W.-K.; Jeon, S.W.; Wang, S.W.; Lim, C.H.; Song, C.; Sung, M. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Sci. Total Environ. 2018, 618, 1089–1095. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, L.; Zhang, X.; Du, Z.; Zhang, H. Satellite-based large-scale vegetation dynamics in ecological restoration programmes of Northern China. Int. J. Remote Sens. 2019, 40, 2296–2312. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Mupenzi, C.; Li, H.; Ma, J.; Li, Z. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River. Remote Sens. 2021, 13, 3648. [Google Scholar] [CrossRef]
- Liu, X.; Xin, L. China’s deserts greening and response to climate variability and human activities. PLoS ONE 2021, 16, e0256462. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.; Qin, Y.; Zheng, Z. Estimating Relations of Vegetation, Climate Change, and Human Activity: A Case Study in the 400 mm Annual Precipitation Fluctuation Zone, China. Remote Sens. 2019, 11, 1159. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Guli·Jiapaer; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wei, W.; Wang, T.; Li, L. Temporal-spatial variations of vegetation cover and surface soil moisture in the growing season across the mountain-oasis-desert system in Xinjiang, China. Geocarto Int. 2021, 0, 1–29. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef] [PubMed]
- Granger, J.E.; Schulze, R.E. Incoming solar radiation patterns and vegetation response: Examples from the natal drakensberg. Vegetatio 1977, 35, 47–54. [Google Scholar] [CrossRef]
- Guo, E.; Wang, Y.; Wang, C.; Sun, Z.; Bao, Y.; Mandula, N.; Jirigala, B.; Bao, Y.; Li, H. NDVI Indicates Long-Term Dynamics of Vegetation and Its Driving Forces from Climatic and Anthropogenic Factors in Mongolian Plateau. Remote Sens. 2021, 13, 688. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.; Zhang, X.; Tian, J.; Abbas, S.; Luo, L.; Meresa, H.K. Both climate and socioeconomic drivers contribute to vegetation greening of the Loess Plateau. Sci. Bull. 2021, 66, 1160–1163. [Google Scholar] [CrossRef]
- Hu, M.; Xia, B. A significant increase in the normalized difference vegetation index during the rapid economic development in the Pearl River Delta of China. Land Degrad. Dev. 2018, 30, 359–370. [Google Scholar] [CrossRef]
- He, P.; Sun, Z.; Han, Z.; Dong, Y.; Liu, H.; Meng, X.; Ma, J. Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environ. Sci. Pollut. Res. 2021, 28, 42516–42532. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Guo, J.; Peng, Q.; Guan, Y.; Zhang, Y.; Zhang, R. The effects of climate factors and human activities on net primary productivity in Xinjiang. Int. J. Biometeorol. 2020, 64, 765–777. [Google Scholar] [CrossRef]
- Jiapaer, G.; Liang, S.; Yi, Q.; Liu, J. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76. [Google Scholar] [CrossRef]
- Yao, J.; Hu, W.; Chen, Y.; Huo, W.; Zhao, Y.; Mao, W.; Yang, Q. Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Sci. Total Environ. 2019, 660, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Shen, Y.; Kang, E.; Li, D.; Ding, Y.; Zhang, G.; Hu, R. Recent and future climate change in northwest China. Clim. Chang. 2007, 80, 379–393. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Peng, Q.; Wu, X.; Ning, H.; Li, C. The relationship between drought activity and vegetation cover in Northwest China from 1982 to 2013. Nat. Hazards 2018, 92, 145–163. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.L.; Liu, J.Y.; Li, Q.Z.; Wei, X.Q.; Yuan, W.P.; Yao, Y.J. Forest cover changes in the Three-North Shelter Forest Region of China during 1990 to 2005. J. Environ. Inform. 2015, 26, 112–120. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, B.; Cheng, L.; Hu, L.; Chen, F. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agric. For. Meteorol. 2019, 275, 79–90. [Google Scholar] [CrossRef]
- Chen, F.H.; Huang, W. Multi-scale climate variations in the arid Central Asia. Adv. Clim. Chang. Res. 2017, 8, 1–2. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2016, 126, 213–222. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute. Resample. Available online: https://desktop.arcgis.com/en/arcmap/latest/tools/data-management-toolbox/resample.htm (accessed on 20 October 2021).
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. 2011, 116, D20104. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Gu, X.; Li, J.; Chen, Y.D.; Kong, D.; Liu, J. Consistency and Discrepancy of Global Surface Soil Moisture Changes From Multiple Model-Based Data Sets Against Satellite Observations. J. Geophys. Res. Atmos. 2019, 124, 1474–1495. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Fu, B. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Peng, W.; Kuang, T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, W.; Liao, Z.; Han, Z.; Xu, X.; Jiao, R.; Liu, H. Effects of climate change on lake area and vegetation cover over the past 55 years in Northeast Inner Mongolia grassland, China. Theor. Appl. Climatol. 2019, 138, 13–25. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geogr. Sin. 2017, 72, 161–173. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Grifin: London, UK, 1975. [Google Scholar]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wang, X.; Li, Y.; Wang, T.; Shen, M.; Du, M.; He, H.; Li, Y.; Luo, W.; Ma, M.; et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Glob. Chang. Biol. 2018, 24, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Hurst, H.E. Long-term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Vendryes, T. Land Rights in Rural China since 1978. China Perspect. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Li, Z.; Wang, S.; Wu, X.; Lu, Y.; Liu, G.; Fu, B. Exploring the effects of the “Grain for Green” program on the differences in soil water in the semi-arid Loess Plateau of China. Ecol. Eng. 2017, 107, 144–151. [Google Scholar] [CrossRef]
- Cao, S.; Zhang, J.; Chen, L.; Zhao, T. Ecosystem water imbalances created during ecological restoration by afforestation in China, and lessons for other developing countries. J. Environ. Manag. 2016, 183, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Lu, C.; Zhao, T.; Shi, X.; Cao, S. Ecological restoration by afforestation may increase groundwater depth and create potentially large ecological and water opportunity costs in arid and semiarid China. J. Clean. Prod. 2018, 176, 1213–1222. [Google Scholar] [CrossRef]
- Lyu, Y.; Shi, P.; Han, G.; Liu, L.; Guo, L.; Hu, X.; Zhang, G. Desertification Control Practices in China. Sustainability 2020, 12, 3258. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Wurina; Terigele; Weilisi. Lianxiao Spatial and temporal variations of vegetation cover and the relationships with climate factors in Inner Mongolia based on GIMMS NDVI3g data. J. Arid Land 2017, 9, 394–407. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M.; Li, C. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
Dataset | Time/Space Resolution | Period | Data Sources | Purpose |
---|---|---|---|---|
NDVI | 15 d/1/12° | 1982–2015 | Global Inventory Modeling and Mapping Studies (GIMMS) (https://ecocast.arc.nasa.gov/, accessed on 1 November 2019) | Geographical detector modeling and residual analysis. |
month/0.05° | 2000–2018 | Moderate Resolution Imaging Spectroradiometer (MODIS) (https://lpdaac.usgs.gov/, accessed on 5 January 2020) | ||
Meteorological | 3 h/0.1° | 1982–2018 | Meteorological Forcing Dataset (CMFD) (http://data.tpdc.ac.cn, accessed on 15 January 2020) | Geographical detector modeling and NDVI prediction based on natural factors. |
Soil moisture | month/0.25° | 1982–2010 | Global Land Data Assimilation System (GLDAS-2.0) (https://disc.gsfc.nasa.gov/, accessed on 15 March 2020) | |
month/0.25° | 2000–2018 | Global Land Data Assimilation System (GLDAS-2.1) (https://disc.gsfc.nasa.gov/, accessed on 15 March 2020) | ||
Vegetation type | 1 km | 2001 | Resource and Environment Data Cloud Platform (http://www.resdc.cn/, accessed on 10 April 2020) | Regional division of different types of vegetation. |
DEM | 90 m | Calculate elevation, aspect, and slope. | ||
Land use data | 1 km | 2000 and 2018 | Analyze land-use changes. | |
Socio-economic statistics data | county | 2000–2018 | Xinjiang Statistical Yearbook 2001–2019. | Analyze the relative contribution of human activities. |
Type of Natural Factors | Code | Index | Unit | q Statistic |
---|---|---|---|---|
Climate | X1 | Average annual temperature | °C | 0.3640 ** |
X2 | Average annual precipitation | mm | 0.5332 ** | |
X3 | Solar radiation | kw/m2 | 0.2471 ** | |
X4 | Specific humidity | g/kg | 0.0935 ** | |
Soil moisture | X5 | Soil moisture (0–10 cm) | kg/m2 | 0.2677 ** |
X6 | Soil moisture (10–40 cm) | kg/m2 | 0.0270 ** | |
X7 | Soil moisture (40–100 cm) | kg/m2 | 0.1969 ** | |
X8 | Soil moisture (100–200 cm) | kg/m2 | 0.1251 ** | |
Topography | X9 | Elevation | m | 0.1042 ** |
X10 | Slope | degree | 0.0233 ** | |
X11 | Aspect | degree | 0.0018 ** |
SNDVI | |Z| | NDVI Trend |
---|---|---|
≥0.0001 | >1.96 | Significant improvement |
≥0.0001 | ≤1.96 | Slight improvement |
−0.0001–0.0001 | ≤1.96 | Stable or non-vegetated area |
≤−0.0001 | ≤1.96 | Slight degradation |
≤−0.0001 | >1.96 | Significant degradation |
Class | 2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GL | CL | BL | FL | WA | UL | 2018 Total | Transfer in | Change | ||
2000 | GL | 31.59 | 2.54 | 0.15 | 1.34 | 0.51 | 11.53 | 48.1 | 16.07 | 0.44 |
CL | 0.64 | 4.64 | 0.33 | 0.13 | 0.07 | 0.14 | 9.02 | 1.31 | 3.07 | |
BL | 0.04 | 0.2 | 0.15 | 0.01 | 0 | 0.03 | 0.87 | 0.28 | 0.44 | |
FL | 2.06 | 0.32 | 0.02 | 1.02 | 0.05 | 0.35 | 2.77 | 2.8 | −1.05 | |
WA | 0.97 | 0.11 | 0.01 | 0.05 | 1.92 | 2.04 | 3.42 | 3.18 | −1.68 | |
UL | 12.80 | 1.21 | 0.21 | 0.22 | 0.87 | 84.96 | 99.05 | 15.31 | −1.22 | |
2000 total | 47.66 | 5.95 | 0.43 | 3.82 | 5.1 | 100.27 | ||||
Transfer out | 16.51 | 4.38 | 0.72 | 1.75 | 1.5 | 14.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Yao, J.; Li, M.; Zheng, J. Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China. Remote Sens. 2021, 13, 4651. https://doi.org/10.3390/rs13224651
Guan J, Yao J, Li M, Zheng J. Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China. Remote Sensing. 2021; 13(22):4651. https://doi.org/10.3390/rs13224651
Chicago/Turabian StyleGuan, Jingyun, Junqiang Yao, Moyan Li, and Jianghua Zheng. 2021. "Assessing the Spatiotemporal Evolution of Anthropogenic Impacts on Remotely Sensed Vegetation Dynamics in Xinjiang, China" Remote Sensing 13, no. 22: 4651. https://doi.org/10.3390/rs13224651