Joint Radar-Communications Exploiting Optimized OFDM Waveforms
"> Figure 1
<p>JRC system model.</p> "> Figure 2
<p>An example of power distribution and subcarrier allocation for the JRC system consisting of two communication users.</p> "> Figure 3
<p>Radar and communication channel conditions for the simulations under consideration.</p> "> Figure 4
<p>Radar-centric design for power allocation and subcarrier assignment. (<b>a</b>) Sum communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>31.56</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>12.67</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>18.27</mn> </mrow> </semantics></math>). (<b>b</b>) Worst-case communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>31.56</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>13.16</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>13.42</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Cooperative design for power allocation and subcarrier assignment (<math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>). (<b>a</b>) Sum communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>28.41</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>23.02</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mrow> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>17.22</mn> </mrow> </mrow> </semantics></math>). (<b>b</b>) Worst-case communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>28.41</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>19.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>19.65</mn> </mrow> </semantics></math>).</p> "> Figure 6
<p>Radar-greedy design with chunk subcarrier allocation (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>31.30</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>13.08</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>15.87</mn> </mrow> </semantics></math>). (<b>a</b>) Overall communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>31.30</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>12.86</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>17.46</mn> </mrow> </semantics></math>). (<b>b</b>) Worst-case communication MI maximization.</p> "> Figure 7
<p>Cooperative design (<math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>) with chunk subcarrier allocation. (<b>a</b>) Overall communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>28.17</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>22.50</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>16.58</mn> </mrow> </semantics></math>). (<b>b</b>) Worst-case communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>28.17</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>17.71</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mrow> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>17.71</mn> </mrow> </mrow> </semantics></math>).</p> "> Figure 8
<p>Cooperative power allocation for varying <math display="inline"><semantics> <mi>γ</mi> </semantics></math>. (<b>a</b>) Sum communication MI maximization. (<b>b</b>) Worst-case communication MI maximization.</p> "> Figure 9
<p>Cooperative power allocation for varying <math display="inline"><semantics> <mi>γ</mi> </semantics></math> using chunk subcarrier allocation. (<b>a</b>) Sum communication MI maximization. (<b>b</b>) Worst-case communication MI maximization.</p> "> Figure 10
<p>Worst-case cooperative design for power allocation and subcarrier assignment in the case of relatively flat radar and communication channels. (<b>a</b>) Simulation scenario. (<b>b</b>) Worst-case MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>22.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>20.58</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>20.58</mn> </mrow> </semantics></math>). (<b>c</b>) Worst-case communication MI maximization (<math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mi>rad</mi> </msub> <mo>;</mo> <mrow> <mi mathvariant="bold">h</mi> <mo>|</mo> <mi mathvariant="bold">s</mi> </mrow> <mo>)</mo> <mo>=</mo> <mn>22.48</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>1</mn> </msub> <mo>|</mo> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>20.42</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>I</mi> <mo>(</mo> <msub> <mi mathvariant="bold">y</mi> <mrow> <mi>com</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>;</mo> <msub> <mi mathvariant="bold">g</mi> <mn>2</mn> </msub> <mo>|</mo> <mrow> <mi mathvariant="bold">s</mi> <mo>)</mo> <mo>=</mo> <mn>20.42</mn> </mrow> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
- We propose a method for exploiting OFDM waveforms in JRC operation where all the subcarriers are used for the primary radar operation. At the same time, the subcarriers are further used for secondary communications and are distributed to multiple communication users in a mutually exclusively manner;
- Considering frequency-selective radar target characteristics and communication channels, we derive the mathematical formulation of the MI for both radar and communication subsystems;
- We devise solutions to the problem of subcarrier power allocation, as well as subcarrier distribution by exploiting the MI for both the radar and communication subsystems. In this context, we develope two optimization strategies respectively implementing radar-centric and cooperative JRC system designs. We show that the optimization strategy for power allocation is a convex optimization problem, whereas the optimization for the subcarrier distribution for multiple communication users is a mixed-integer linear programming (MILP) problem;
- In order to reduce the computational complexity of the optimization problems, we introduce chunk power allocation and subcarrier assignment techniques. These techniques group close subcarriers in the form of chunks, leading to a reduction in the computational complexity without noticeable performance loss in both the radar and communication subsystems.
2. System Model
3. Optimization Criteria Based on Mutual Information
3.1. Radar Subsystem
3.2. Communication Subsystem
4. Optimal Power Distribution and Subcarrier Allocation
4.1. Radar-Centric Design
4.1.1. Power Allocation
4.1.2. Subcarrier Assignment
4.2. Cooperative Design
4.2.1. Power Distribution
4.2.2. Subcarrier Allocation
5. Chunk Subcarrier Processing
6. Numerical Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
DFT | discrete Fourier transform |
IDFT | inverse discrete Fourier transform |
JRC | Joint Radar-communication |
MI | mutual information |
MILP | mixed-integer linear programming |
OFDM | orthogonal frequency division multiplexing |
QPSK | quadrature phase shift keying |
RCS | radar cross-section |
References
- Sturm, C.; Zwick, T.; Wiesbeck, W. An OFDM system concept for joint radar and communications operations. In Proceedings of the VTC Spring 2009-IEEE 69th Vehicular Technology Conference, Barcelona, Spain, 26–29 April 2009. [Google Scholar]
- Blunt, S.D.; Cook, M.R.; Stiles, J. Embedding information into radar emissions via waveform implementation. In Proceedings of the 2010 International Waveform Diversity and Design Conference, Niagara Falls, ON, Canada, 8–13 August 2010; pp. 195–199. [Google Scholar] [CrossRef]
- Griffiths, H.; Blunt, S.; Cohen, L.; Savy, L. Challenge problems in spectrum engineering and waveform diversity. In Proceedings of the 2013 IEEE Radar Conference (RadarCon13), Ottawa, ON, Canada, 29 April–3 May 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Deng, H.; Himed, B. Interference mitigation processing for spectrum-sharing between radar and wireless communications systems. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1911–1919. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Signaling strategies for dual-function radar–communications: An overview. IEEE Aerosp. Electron. Syst. Mag. 2016, 31, 36–45. [Google Scholar] [CrossRef]
- Kumar, S.; Costa, G.; Kant, S.; Flemming, B.F.; Marchetti, N.; Mogensen, P. Spectrum sharing for next generation wireless communication networks. In Proceedings of the 2008 First International Workshop on Cognitive Radio and Advanced Spectrum Management, Aalborg, Denmark, 14 February 2008; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, J.; Chen, H.H. Cognitive Radio Networks: Architectures, Protocols, and Standards, 1st ed.; CRC Press, Inc.: Boca Raton, FL, USA, 2010. [Google Scholar]
- Guerci, J.R. Cognitive Radar: The Knowledge-Aided Fully Adaptive Approach; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Blunt, S.D.; Metcalf, J.G.; Biggs, C.R.; Perrins, E. Performance characteristics and metrics for intra-pulse radar-embedded communication. IEEE J. Sel. Areas Commun. 2011, 29, 2057–2066. [Google Scholar] [CrossRef]
- Bliss, D.W. Cooperative radar and communications signaling: The estimation and information theory odd couple. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 50–55. [Google Scholar] [CrossRef] [Green Version]
- Hayvaci, H.T.; Tavli, B. Spectrum sharing in radar and wireless communication systems: A review. In Proceedings of the 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA), Palm Beach, Aruba, 3–8 August 2014; pp. 810–813. [Google Scholar] [CrossRef]
- Euzière, J.; Guinvarc’h, R.; Lesturgie, M.; Uguen, B.; Gillard, R. Dual function radar–communication time-modulated array. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Geng, Z.; Deng, H.; Himed, B. Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Process. Lett. 2015, 22, 484–488. [Google Scholar] [CrossRef]
- Huang, K.W.; Bică, M.; Mitra, U.; Koivunen, V. Radar waveform design in spectrum sharing environment: Coexistence and cognition. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1698–1703. [Google Scholar]
- Guerci, J.R.; Guerci, R.M.; Lackpour, A.; Moskowitz, D. Joint design and operation of shared spectrum access for radar and communications. In Proceedings of the 2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 761–766. [Google Scholar] [CrossRef]
- Ciuonzo, D.; De Maio, A.; Foglia, G.; Piezzo, M. Intrapulse radar-embedded communications via multiobjective optimization. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 2960–2974. [Google Scholar] [CrossRef]
- Hassanien, A.; Amin, M.G.; Zhang, Y.D.; Ahmad, F. Dual-function radar–communications: Information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 2016, 64, 2168–2181. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Zhang, Y. Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Commun. Lett. 2017, 21, 2174–2177. [Google Scholar] [CrossRef]
- Ahmed, A.; Zhang, Y.D.; Himed, B. Multi-user dual-function radar–communications exploiting sidelobe control and waveform direversity. In Proceedings of the 2018 IEEE Radar Conference (RadarCon), Oklahoma City, OK, USA, 23–27 April 2018. [Google Scholar]
- Liu, F.; Zhou, L.; Masouros, C.; Li, A.; Luo, W.; Petropulu, A. Toward dual-functional radar–communication systems: Optimal waveform design. IEEE Trans. Signal Process. 2018, 66, 4264–4279. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Gu, Y.; Silage, D.; Zhang, Y.D. Power-efficient multi-user dual-function radar–communication. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Ahmed, A.; Zhang, Y.D.; Gu, Y. Dual-function radar-communications using QAM-based sidelobe modulation. Digital Signal Process. 2018, 82, 166–174. [Google Scholar] [CrossRef]
- Bică, M.; Koivunen, V. Radar waveform optimization for target parameter estimation in cooperative radar–communications systems. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 2314–2326. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hassanien, A.; Amin, M.G. Sparse transmit array design for dual-function radar–communications by antenna selection. Digital Signal Process. 2018, 83, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Bică, M.; Koivunen, V. Multicarrier radar–communications waveform design for RF convergence and coexistence. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7780–7784. [Google Scholar]
- Ahmed, A.; Zhang, Y.D.; Himed, B. Distributed dual-function radar–communication MIMO system with optimized resource allocation. In Proceedings of the 2019 International Radar Conference (RADAR), Toulon, France, 23–27 September 2019. [Google Scholar]
- Dimas, A.; Clark, M.A.; Li, B.; Psounis, K.; Petropulu, A.P. On radar privacy in shared spectrum scenarios. In Proceedings of the ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 7790–7794. [Google Scholar]
- Ahmed, A.; Zhang, S.; Amin, V.S.; Zhang, Y.D. Spectrum sharing strategy for radio frequency based medical services. In Proceedings of the 2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 7 December 2019; pp. 1–4. [Google Scholar]
- Cheng, Z.; Liao, B.; Shi, S.; He, Z.; Li, J. Co-design for overlaid MIMO radar and downlink MISO communication systems via Cramér–Rao bound minimization. IEEE Tran. Signal Process. 2019, 67, 6227–6240. [Google Scholar] [CrossRef]
- Wang, F.; Li, H. Joint power allocation for radar and communication co-existence. IEEE Signal Process. Lett. 2019, 26, 1608–1612. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.; Tao, R. Waveform design for the joint MIMO radar and communications with low integrated sidelobe levels and accurate information embedding. In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 8263–8267. [Google Scholar]
- Ahmed, A.; Zhang, Y.; Hassanien, A.; Himed, B. OFDM-based Joint Radar-communication system: Optimal subcarrier allocation and power distribution by exploiting mutual information. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019.
- Maio, A.D.; Lops, M. Design principles of MIMO radar detectors. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 886–898. [Google Scholar] [CrossRef]
- Yang, Y.; Blum, R.S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 330–343. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Gu, Y.; Zhang, Y.D. Information-theoretic pilot design for downlink channel estimation in FDD massive MIMO systems. IEEE Trans. Signal Process. 2019, 67, 2334–2346. [Google Scholar] [CrossRef]
- Gurobi. Gurobi Optimizer Reference Manual. Available online: http://www.gurobi.com (accessed on 24 October 2021).
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 24 October 2021).
Radar-Centric Design | Cooperative Design () | |||
---|---|---|---|---|
Maximum | Worst-Case | Maximum | Worst-Case | |
Comm. MI | Comm. MI | Comm. MI | Comm. MI | |
31.56 | 31.56 | 28.41 | 28.41 | |
12.67 | 13.16 | 23.02 | 19.65 | |
18.27 | 13.42 | 17.22 | 19.65 |
Radar-Centric Design | Cooperative Design () | |||
---|---|---|---|---|
Maximum | Worst-Case | Maximum | Worst-Case | |
Comm. MI | Comm. MI | Comm. MI | Comm. MI | |
31.30 | 31.30 | 28.17 | 28.17 | |
12.86 | 13.08 | 22.50 | 17.71 | |
17.46 | 15.87 | 16.58 | 17.71 |
Power Allocation (Radar-Centric) (18) | Subcarrier Assignment (Sum com. MI) (19) | Subcarrier Assignment (Worst-Case com. MI) (20) or (21) | Power Allocation (Sum com. MI) (22) | Power Allocation (Worst-Case com. MI) | |
---|---|---|---|---|---|
Without chunks | 276 | 232 | 321 | 80,605 | 80,999 |
2 subcarrier chunks | 214 | 220 | 251 | 34,415 | 34,812 |
4 subcarrier chunks | 177 | 218 | 235 | 15,650 | 16,288 |
8 subcarrier chunks | 166 | 214 | 221 | 7291 | 8204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Zhang, Y.D.; Hassanien, A. Joint Radar-Communications Exploiting Optimized OFDM Waveforms. Remote Sens. 2021, 13, 4376. https://doi.org/10.3390/rs13214376
Ahmed A, Zhang YD, Hassanien A. Joint Radar-Communications Exploiting Optimized OFDM Waveforms. Remote Sensing. 2021; 13(21):4376. https://doi.org/10.3390/rs13214376
Chicago/Turabian StyleAhmed, Ammar, Yimin D. Zhang, and Aboulnasr Hassanien. 2021. "Joint Radar-Communications Exploiting Optimized OFDM Waveforms" Remote Sensing 13, no. 21: 4376. https://doi.org/10.3390/rs13214376
APA StyleAhmed, A., Zhang, Y. D., & Hassanien, A. (2021). Joint Radar-Communications Exploiting Optimized OFDM Waveforms. Remote Sensing, 13(21), 4376. https://doi.org/10.3390/rs13214376