High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data
<p>Flowchart of the cooperate density-integrated inversion method.</p> "> Figure 2
<p>Information of models in different depth. (<b>a</b>) Density models with 1000 kg/m<sup>3</sup>. (<b>b</b>) Airborne gravity anomaly at 100 m altitude. (<b>c</b>) Vertical gradient anomaly of airborne gravity data at 100 m altitude.</p> "> Figure 3
<p>Model tests of two prisms in different depths. (<b>a</b>) Density slice (y = 10 km) by Tikhonov regularized method of airborne gravity data. (<b>b</b>) Density slice (y = 10 km) by Tikhonov regularized method of airborne gravity gradient data. (<b>c</b>) Density slice (y = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>d</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by data combined joint inversion method of airborne gravity and its gradient data. (<b>e</b>) Density slice (y = 10 km) by structure constrained joint inversion method of airborne gravity data. (<b>f</b>) Density slice (y = 10 km) by structure constrained joint inversion method of airborne gravity gradient data. (<b>g</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method. (<b>h</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by the cooperate density-integrated inversion method.</p> "> Figure 3 Cont.
<p>Model tests of two prisms in different depths. (<b>a</b>) Density slice (y = 10 km) by Tikhonov regularized method of airborne gravity data. (<b>b</b>) Density slice (y = 10 km) by Tikhonov regularized method of airborne gravity gradient data. (<b>c</b>) Density slice (y = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>d</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by data combined joint inversion method of airborne gravity and its gradient data. (<b>e</b>) Density slice (y = 10 km) by structure constrained joint inversion method of airborne gravity data. (<b>f</b>) Density slice (y = 10 km) by structure constrained joint inversion method of airborne gravity gradient data. (<b>g</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method. (<b>h</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by the cooperate density-integrated inversion method.</p> "> Figure 4
<p>Information of models in different depths with 5% Gaussian noise. (<b>a</b>) Airborne gravity anomaly at 100 m altitude. (<b>b</b>) Vertical gradient anomaly of airborne gravity at 100 m altitude.</p> "> Figure 5
<p>Model tests of two prisms in different depths containing noise. (<b>a</b>) Density slice (y = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>b</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by data combined joint inversion method of airborne gravity and its gradient data. (<b>c</b>) Density slice (y = 10 km) by the cooperate density-integrated inversion method. (<b>d</b>) 3D density distribution (larger than 350 kg/m<sup>3</sup>) by the cooperate density-integrated inversion method.</p> "> Figure 6
<p>Information of models in the same depth. (<b>a</b>) Density models with 1 kg/m<sup>3</sup>. (<b>b</b>) Airborne gravity anomaly at 100 m altitude. (<b>c</b>) Vertical gradient anomaly of airborne gravity data at 100 m altitude.</p> "> Figure 7
<p>Model tests of two prisms in the same depths. (<b>a</b>) Density slice (y = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>b</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by data combined joint inversion method of airborne gravity and its gradient data. (<b>c</b>) Density slice (y = 10 km) by the cooperate density-integrated inversion method. (<b>d</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by the cooperate density-integrated inversion method.</p> "> Figure 8
<p>Information of complex models. (<b>a</b>) Density models with 1000 kg/m<sup>3</sup>. (<b>b</b>) Airborne gravity anomaly at 100 m altitude. (<b>c</b>) Vertical gradient anomaly of airborne gravity at 100 m altitude.</p> "> Figure 9
<p>Complex model tests of three prisms. (<b>a</b>) Density slice (x = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>b</b>) Density slice (x = 10 km) by cooperate density-integrated inversion method. (<b>c</b>) Density slice (y = 10 km) by data combined joint inversion method of airborne gravity and its gradient data. (<b>d</b>) Density slice (y = 10 km) by the cooperate density-integrated inversion method. (<b>e</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by data combined joint inversion method of airborne gravity and its gradient data. (<b>f</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by the cooperate density-integrated inversion method of airborne gravity and its gradient data.</p> "> Figure 10
<p>Complex model tests with different altitudes. (<b>a</b>) Airborne gravity anomaly at 150 m altitude. (<b>b</b>) Vertical gradient anomaly of airborne gravity at 150 m altitude. (<b>c</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method at 150 m altitude. (<b>d</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>). (<b>e</b>) Airborne gravity anomaly at 200 m altitude. (<b>f</b>) Vertical gradient anomaly of airborne gravity at 200 m altitude. (<b>g</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method at 200 m altitude. (<b>h</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>).</p> "> Figure 11
<p>Complex model tests using airborne gravity and calculated vertical gradient data. (<b>a</b>) Calculated airborne gravity gradient data. (<b>b</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method. (<b>c</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by cooperate density-integrated inversion method.</p> "> Figure 11 Cont.
<p>Complex model tests using airborne gravity and calculated vertical gradient data. (<b>a</b>) Calculated airborne gravity gradient data. (<b>b</b>) Density slice (y = 10 km) by cooperate density-integrated inversion method. (<b>c</b>) 3D density distribution (larger than 370 kg/m<sup>3</sup>) by cooperate density-integrated inversion method.</p> "> Figure 12
<p>Real data. (<b>a</b>) Geological map of Liaoning western area. (<b>b</b>) Real airborne gravity anomaly of Liaoning western area. (<b>c</b>) Calculated airborne gravity vertical gradient anomaly of Liaoning western area. (<b>d</b>) Drilling data information.</p> "> Figure 12 Cont.
<p>Real data. (<b>a</b>) Geological map of Liaoning western area. (<b>b</b>) Real airborne gravity anomaly of Liaoning western area. (<b>c</b>) Calculated airborne gravity vertical gradient anomaly of Liaoning western area. (<b>d</b>) Drilling data information.</p> "> Figure 13
<p>Density inversion result of real data. (<b>a</b>) The vertical slices and the 3D density results with the value larger than 0.2 kg/m<sup>3</sup> computed by data combined joint inversion method. (<b>b</b>) The horizontal slices of 3D density results computed by the data combined joint inversion method. (<b>c</b>) The vertical slices and the 3D density results with a value larger than 0.2 kg/m<sup>3</sup> computed by the proposed cooperative density inversion method. (<b>d</b>) The horizontal slices of 3D density results computed by the proposed cooperative density inversion method.</p> "> Figure 14
<p>Distribution of density inversion results. (<b>a</b>) The modified location of iron mines by data combined joint inversion method. (<b>b</b>) The modified location of iron mines by the proposed cooperative density inversion method.</p> ">
Abstract
:1. Introduction
2. High-Resolution Cooperate Density-Integrated Inversion Method
- k = 0,
- , . (k = 0,1,2…)
3. Theoretical Model Tests
4. Real Data Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.G.; Oldenburg, D.W. 3-D inversion of gravity data. Geophysics 1998, 2, 109–119. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. Focusing geophysical inversion images. Geophysics 1999, 6, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.G.; Oldenburg, D.W. Incorporating geological dip information into geophysical inversions. Geophysics 2000, 2, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Chasseriau, P.; Chouteau, M. 3D gravity inversion using a model of parameter covariance. J. Appl. Geophys. 2003, 6, 59–74. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Ellis, R.; Mukherjee, S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 2004, 7, 877–1103. [Google Scholar] [CrossRef]
- Commer, M. Three-dimensional gravity modelling and focusing inversion using rectangular meshes. Geophys. Prospect. 2011, 9, 59. [Google Scholar] [CrossRef]
- Ghalehnoee, M.H.; Ansari, A.; Ghorbani, A. Improving compact gravity inversion using new weighting functions. Geophys. J. Int. 2017, 1, 546–560. [Google Scholar] [CrossRef]
- Geng, M.X.; Hu, X.Y.; Zhang, H.L.; Liu, S. 3D inversion of potential field data using a marginalizing probabilistic method. Geophysics 2018, 10, G93–G106. [Google Scholar] [CrossRef]
- Meng, Z.H.; Li, F.T. Comment on: “Fast 3D inversion of gravity data using solution space priorconditioned Lanczos bidiagonalization”, by Mohammad Rezaie, Ail Moradzadeh and Ali Nejati Kalateh. J. Appl. Geophys. 2020, 12, 42–50. [Google Scholar] [CrossRef]
- Barnes, G.; Lumley, J. Processing gravity gradient data. Geophysics 2011, 3, I33–I47. [Google Scholar] [CrossRef]
- Chen, T.; Yang, D.K. Gravity gradient tensors derived from radial component of gravity vector using taylor series expansion. Geophys. J. Int. 2021, 8, 412–431. [Google Scholar] [CrossRef]
- Dai, C.L.; Shum, C.K.; Wang, R.J.; Wang, L. Improved constraints on seismic source parameters of the 2011 Tohoku earthquake from GRACE gravity and gravity gradient changes. Geophys. Res. Lett. 2014, 3, 1929–1936. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.Y.; Hu, B.Q.; Chang, L.B.; Qin, F.J.; Lyu, X. An Aided Navigation Method Based on Strapdown Gravity Gradiometer. Sensors 2021, 1, 829. [Google Scholar] [CrossRef]
- Cattin, R.; Berthet, T.; Hetényi, G.; Saraswati, A.; Panet, I.; Mazzotti, S.; Cadio, C.; Ferry, M. Joint inversion of ground gravity data and satellite gravity gradients between Nepal and Bhutan: New insights on structural and seismic segmentation of the Himalayan arc. Phys. Chem. Earth 2021, 10, 103002. [Google Scholar] [CrossRef]
- Plasman, M.; Tiberi, C.; Cadio, C.; Saraswati, A.T.; Pajot-Métivier, G.; Diament, M. From space to lithosphere: Inversion of the GOCE gravity gradients. Supply to the Earth’s interior study. Geophys. J. Int. 2020, 6, 398–419. [Google Scholar] [CrossRef]
- Dransfield, M.; Zeng, Y. Airborne gravity gradiometry terrain correction and elevation error. Geophysics 2009, 9, I37–I42. [Google Scholar] [CrossRef]
- Kass, M.; Li, Y. Practical aspects of terrain correction in airborne gravity gradiometry surveys. Explor. Geophys. 2007, 9, 198–203. [Google Scholar] [CrossRef]
- Eppelbaum, L.V. Geophysical potential fields: Geological and environmental applications. In Computational Geophysics; Elsevier: Amsterdam, The Netherlands, 2019; p. 7. [Google Scholar]
- Bell, R.E.; Anderson, R.; Pratson, L. Gravity gradiometry resurfaces. Lead. Edge 1997, 1, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Fedi, M.; Hansen, P.C.; Paoletti, V. Analysis of depth resolution in potential-field inversion. Digit. Libr. Home 2005, 11, A1–A11. [Google Scholar] [CrossRef]
- Droujinine, A.; Vasilevsky, A.; Evans, R. Feasibility of using full tensor gradient (FTG) data for detection of local lateral density contrasts during reservoir monitoring. Geophys. J. Int. 2007, 6, 795–820. [Google Scholar] [CrossRef] [Green Version]
- Difrancesco, D.; Grierson, A.; Kaputa, D.; Meyer, T. Gravity gradiometer systems—Advances and challenges. Geophys. Prospect. 2009, 6, 615–623. [Google Scholar] [CrossRef]
- Vasco, D.W. Resolution and variance operators of gravity and gravity gradiometry. Geophysics 2012, 7, 889–899. [Google Scholar] [CrossRef]
- Meju, M.A.; Gallardo, L.A.; Mohamed, A. Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophys. Res. Lett. 2003, 4, 1373. [Google Scholar] [CrossRef]
- Gallardo, L.A. Multiple cross-gradient joint inversion for geospectral imaging. Geophys. Res. Lett. 2007, 10, L19301. [Google Scholar] [CrossRef]
- Fregoso, E.; Gallardo, L.A. Cross-gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics 2009, 7, L31. [Google Scholar] [CrossRef]
- Farshad, J.; Ali, M.; Faramarz, D.A. An Improved 3D Joint Inversion Method of Potential Field Data Using Cross-Gradient Constraint and LSQR Method. Pure Appl. Geophys. 2018, 12, 4389–4409. [Google Scholar] [CrossRef]
- Max, M.; Björn, H.; Marion, J.; Alan, W.R.; Richard, W.H. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophys. J. Int. 2011, 1, 477–493. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Structure-coupled multiphysics imaging in geophysical sciences. Rev. Geophys. 2011, 3, 1–19. [Google Scholar] [CrossRef]
- Zhang, R.Z.; Li, T.L.; Deng, X.H.; Huang, X.G.; Pak, Y. Two-dimensional data-space joint inversion of magnetotelluric, gravity, magnetic and seismic data with cross-gradient constraints. Geophys. Prospect. 2020, 2, 721–731. [Google Scholar] [CrossRef]
- Jiang, W.B. 3-D joint inversion of seismic waveform and airborne gravity gradiometry data. Geophys. J. Int. 2020, 223, 746–764. [Google Scholar] [CrossRef]
- Wu, L.; Ke, X.P.; Hsu, H.; Fang, J.; Xiong, C.Y.; Wang, Y. Joint gravity and gravity gradient inversion for subsurface object detection. IEEE Geoence. Remote Sens. Lett. 2013, 7, 865–869. [Google Scholar] [CrossRef]
- Wan, L.; Zhdanov, M.S. Iterative migration of gravity and gravity gradiometry data. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2013; pp. 1211–1215. [Google Scholar]
- Capriotti, J.; Li, Y.G. Gravity and gravity gradient data: Understanding their information content through joint inversions. In SEG Technical Program Expanded Abstracts; Society of Exploration Geophysicists: Houston, TX, USA, 2014; p. 1949. [Google Scholar]
- Zhdanov, M.S.; Lin, W. Adaptive multinary inversion of gravity and gravity gradient data. Geophysics 2017, 11, G101–G114. [Google Scholar] [CrossRef]
- Liu, J.Z.; Liu, L.T.; Liang, X.H.; Ye, Z.R. 3D density inversion of gravity gradient data using the extrapolated tikhonov regularization. Appl. Geophys. 2015, 6, 137–146. [Google Scholar] [CrossRef]
- Ranchin, T.; Wald, L. The wavelet transform for the analysis of remotely sensed images. Int. J. Remote. Sens. 1993, 10, 615–619. [Google Scholar] [CrossRef]
- Douma, H.; De Hoop, M.V. Leading-order seismic imaging using curvelets. Geophysics 2007, 12, S231–S248. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, F.J.; Wang, D.L.; Hennenfent, G.; Moghaddam, P.P. Curvelet-based seismic data processing: A multiscale and nonlinear approach. Geophysics 2007, 12, A1–A5. [Google Scholar] [CrossRef]
- Candes, E.J.; Donoho, D. Continuous curvelet transform: II. Discretization and frames. Appl. Comput. Ilarmoncc Anal. 2005, 9, 198–222. [Google Scholar] [CrossRef] [Green Version]
- Nencinia, F.; Garzeli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 4, 143–156. [Google Scholar] [CrossRef]
- Huang, M.T.; Ouyang, Y.Z.; Zhai, G.J.; Deng, K.L.; Lu, X.P.; Wu, T.Q. Tikhonov Regularization Collocation for Multi-source Gravity Data Fusion Processing. Hydrogr. Surv. Charting 2013, 5, 6–12. [Google Scholar] [CrossRef]
- Tikhonov, A.N.; Arsenin, V.Y. Solusions of Ill-Posed Problems; John Wiley and Sons Inc.: New York, NY, USA, 1977; p. 5. [Google Scholar]
- Vatankhah, S.; Ardestani, V.E.; Renaut, R.A. Automatic estimation of the regularization parameter in 2D focusing gravity inversion: Application of the method to the safo manganese mine in the northwest of iran. J. Geophys. Eng. 2014, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Farquharson, C.G.; Oldenburg, D.W. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys. J. Int. 2004, 3, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.G.; Oldenburg, D.W. 3D inversion of magnetic data. Geophysics 1996, 4, 394–408. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. 3-D magnetic inversion with data compression and image focusing. Geophysics 2002, 67, 1532–1541. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.H.; Xiong, S.Q.; Yu, C.C.; Zhang, D.S.; Wu, C.P. The Estimation of Magnetite Prospective Resources Based on Aeromagnetic Data: A Case Study of Qihe Area, Shandong Province, China. Remote Sens. 2021, 3, 1216. [Google Scholar] [CrossRef]
- Meju, L. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 7, 183–196. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Joint two-dimensional DC resistivity and seismic travel time inversion with cross-gradients constraints. J. Geophys. Res. Solid Earth 2004, 3, 109. [Google Scholar] [CrossRef]
- Vatankhah, S.; Liu, S.; Renaut, R.A.; Hu, X.; Hogue, J.D.; Gharloghi, M. An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform. IEEE Trans. Geosci. Remote Sens. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Otazu, X.; Gonzalez-Audicana, M.; Fors, O.; Nunez, J. Introduction of sensor spectral response into image fusion methods. application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens. 2005, 10, 2376–2385. [Google Scholar] [CrossRef] [Green Version]
- Ghellab, A.M.R.; Belbachir, M.F. Efficient image fusion method based on the fourier transform by introducing sensor spectral response. J. Appl. Remote Sens. 2013, 5, 073552. [Google Scholar] [CrossRef]
- Beiki, M.; Pedersen, L.B. Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 2010, 10, I37–I49. [Google Scholar] [CrossRef]
- Jia, B.; Ding, Q.H.; Yang, W.H.; Zhang, C.H.; Guo, S.Z. Evolusion of sihetuen-houyanzigou early cretaceous volcanic cluster apparatus and volcanic effusive activity in western Liaoning. Acta Petrol. Sin. 2009, 5, 1191–1200. [Google Scholar] [CrossRef]
- Yin, J.N.; Mark, L.; Teng, S.R. Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning province, North-East China—ScienceDirect. Ore Geol. Rev. 2018, 11, 2376–2385. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Gao, T.; Li, L.; Wang, T.; Niu, R.; Li, X. High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data. Remote Sens. 2021, 13, 4157. https://doi.org/10.3390/rs13204157
Ma G, Gao T, Li L, Wang T, Niu R, Li X. High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data. Remote Sensing. 2021; 13(20):4157. https://doi.org/10.3390/rs13204157
Chicago/Turabian StyleMa, Guoqing, Tong Gao, Lili Li, Taihan Wang, Runxin Niu, and Xinwei Li. 2021. "High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data" Remote Sensing 13, no. 20: 4157. https://doi.org/10.3390/rs13204157
APA StyleMa, G., Gao, T., Li, L., Wang, T., Niu, R., & Li, X. (2021). High-Resolution Cooperate Density-Integrated Inversion Method of Airborne Gravity and Its Gradient Data. Remote Sensing, 13(20), 4157. https://doi.org/10.3390/rs13204157