Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis
<p>The location of sub-basins of High Mountain Asia (HMA). Glacier outlines are from the Randolph Glacier Inventory (RGI v6.0), the Second Chinese Glacier Inventory (CGI2), and the GAMDAM inventory, and are drawn in sky blue; the positions of the China Meteorological Administration (CMA) stations are indicated by black triangles.</p> "> Figure 2
<p>Automated lake mapping procedure (<b>left</b>) including image subsetting, snow, cloud, shadow, and SLC-off pixel detection, global threshold segmentation, generation of an image block for each glacial lake obtained from Hi-MAG dataset and initial segmentation results, and local glacial lake mapping. Lake mapping procedures taking one area in the central Himalayas as an example (<b>right</b>): (<b>a</b>) false color composite (R/G/B = Band 5/4/3) of original TOA data; (<b>b</b>) bad observation identification including clouds, shadows, and snow; (<b>c</b>) potential glacial lake extent found by applying an MNDWI threshold (≥0.1); (<b>d</b>) image block for each glacial lake; and (<b>e</b>) the final glacial lake shorelines determined using the NLAC model. The image used in this case was acquired by the Landsat-8 OLI on 28 October 2014. The sequence numbers (<b>a</b>–<b>e</b>) in the left-hand diagram correspond with those in the right-hand parts.</p> "> Figure 3
<p>Schematic diagram of the Digital Shoreline Analysis System (DSAS). The sample data of the shoreline are provided by the DSAS software application.</p> "> Figure 4
<p>Distribution of glacial lakes in the HMA in 2008, 2012, and 2016. This map was produced using an automated mapping method and Landsat images collected throughout the year. The three zoom-in maps (<b>a</b>–<b>c</b>) show local detail in different regions including the central Himalaya (<b>a</b>), Eastern Hindu Kush (<b>b</b>), and Nyainqentanglha (<b>c</b>).</p> "> Figure 5
<p>(<b>a</b>) Frequency and areal distribution of glacial lakes by elevation class; and (<b>b</b>) expansion rate of glacial lake area within the different elevation range from 2008 to 2016.</p> "> Figure 6
<p>Evolution of different types of glacial lakes: (<b>a</b>–<b>c</b>) proglacial lakes; (<b>d</b>–<b>f</b>) supraglacial lakes; and (<b>g</b>–<b>i</b>) unconnected glacial lakes. Background images were derived from USGS Landsat 8 satellite data for 2016.</p> "> Figure 7
<p>Temporal development and sudden drainage of Lake Merzbacher (79.89°E, 42.23°N).</p> "> Figure 8
<p>Examples of shoreline erosion and expansion rates measured at 30 m intervals between 2008, 2012, and 2016 for lake (<b>a</b>) (94.2667°E, 30.1018°N); lake (<b>b</b>) (89.1916°E, 28.3325°N); and lake (<b>c</b>) (94.0917°E, 30.1251°N).</p> "> Figure 9
<p>Mean rate of expansion of glacial lakes from 2008 to 2016 across the HMA region.</p> "> Figure 10
<p>Spatial variation in (<b>a</b>) air temperature, as derived from NCEP Reanalysis data, and (<b>b</b>) precipitation, as derived from GPCP data, from 1979 to 2016 in the HMA region. Plus symbols indicate the different sub-basins listed in <a href="#remotesensing-13-03757-t002" class="html-table">Table 2</a>.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Study Materials
3.1.1. Landsat Images
3.1.2. Glacier Inventory Data
3.1.3. Digital Elevation Model (DEM) data
3.1.4. Meteorological Observations
3.2. Methods
3.2.1. Glacial Lake Mapping
3.2.2. Estimating Lake Area Uncertainties
3.2.3. Measuring Lake Shoreline Changes
4. Results
4.1. Spatial Distribution and Temporal Development of Glacial Lakes from 2008 to 2016
4.2. Different Evolution Patterns for Glacial Lakes
4.3. Shoreline Expansion and Erosion Rates
4.4. Climate Data Analysis
5. Discussion
5.1. Factors Controlling the Morphological Characteristics of Glacial Lakes
5.2. Potentially Dangerous Glacial Lakes and GLOF Risk Assessment
5.3. Planned Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Yang, G.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Kaser, G.; Kienholz, C. The Randolph glacier inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Wang, Y.; Liu, S.; Pu, J.; Shen, Y.; Lu, A. Recent glacial retreat in high asia in china and its impact on water resource in northwest china. Sci. Sin. Terrae 2004, 47, 1065–1075. [Google Scholar] [CrossRef]
- He, Y.; Theakstone, W.H.; Tandong, Y.; Tuo, C.; Zhang, D.D. The irregular pattern of isotopic and ionic signals in the typical monsoon temperate-glacier area, Yulong Mountain, China. Ann. Glaciol. 2002, 35, 167–174. [Google Scholar]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the mount Everest region, Nepal. Ann. Glaciol. 2014, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65–66, 31–47. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Aryal, R. Climate change in Nepal and its impact on Himalayan glaciers. Reg. Environ. Chang. 2011, 11, 65–77. [Google Scholar] [CrossRef]
- Westoby, M.J.; Glasser, N.F.; Brasington, J.; Hambrey, M.J.; Quincey, D.J.; Reynolds, J.M. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.J.; Cheng, Z.L.; Su, P.C. The relationship between air temperature fluctuation and glacial lake outburst floods in Tibet, China. Quat. Int. 2014, 321, 78–87. [Google Scholar] [CrossRef]
- Thompson, S.S.; Benn, D.I.; Dennis, K.; Luckman, A. A rapidly growing moraine-dammed glacial lake on Ngozumpa glacier, Nepal. Geomorphology 2012, 145–146, 1–11. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.J.; Richardson, S.D.; Luckman, A.; Lucas, R.M.; Reynolds, J.M.; Hambrey, M.J.; Glasser, N.F. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob. Planet. Chang. 2007, 56, 137–152. [Google Scholar] [CrossRef]
- Huggel, C.; Fischer, L.; Guex, S.; Paul, F.; Roer, I.; Salzmann, N.; Schlaefli, S.; Schmutz, K.; Schneider, D. Remote sensing of glacier- and permafrost-related hazards in high mountains: An overview. Nat. Hazards Earth Syst. Sci. 2005, 5, 527–554. [Google Scholar]
- Wang, W.; Xiang, Y.; Gao, Y.; Lu, A.; Yao, T. Rapid expansion of glacial lakes caused by climate and glacier retreat in the central Himalayas. Hydrol. Process. 2015, 29, 859–874. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Singh, M.K.; Joshi, P.K.; Snehmani; Singh, S.; Sam, L.; Gupta, R.D.; Kumar, R. A lake detection algorithm (LDA) using Landsat 8 data: A comparative approach in glacial environment. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 150–163. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Ke, L.; Nie, Y.; Wang, J. Glacial lake evolution in the southeastern Tibetan plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. J. Hydrol. 2016, 540, 504–514. [Google Scholar] [CrossRef] [Green Version]
- Kaushik, S.; Rafiq, M.; Joshi, P.K.; Singh, T. Examining the glacial lake dynamics in a warming climate and GLOF modelling in parts of Chandra basin, Himachal Pradesh, India. Sci. Total Environ. 2020, 714, 136455. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Watson, C.S. Annual 30 m dataset for glacial lakes in high mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Shugar, D.H.; Burr, A.; Haritashya, U.K.; Kargel, J.S.; Watson, C.S.; Kennedy, M.C.; Bevington, A.R.; Betts, R.A.; Harrison, S.; Strattman, K. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Chang. 2020, 10, 939–945. [Google Scholar] [CrossRef]
- Thakuri, S.; Salerno, F.; Bolch, T.; Guyennon, N.; Tartari, G. Factors controlling the accelerated expansion of Imja lake, mount Everest region, Nepal. Ann. Glaciol. 2016, 57, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.R.; Neumann, K.; Nicholson, K.N.; Bird, B.W.; Sharma, S. Melting Himalayan glaciers threaten domestic water resources in the mount Everest region, Nepal. Front. Earth Sci. 2020, 8, 128. [Google Scholar] [CrossRef]
- Luo, W.; Zhang, G.; Chen, W.; Xu, F. Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range. Sci. Total Environ. 2020, 735, 139607. [Google Scholar] [CrossRef]
- Wang, S. Glacial lake change risk and management on the Chinese Nyainqentanglha in the past 40 years. Nat. Hazards Earth Syst. Sci. Discuss. 2016. [Google Scholar] [CrossRef]
- Mirlan, D.; Chiyuki, N.; Tsutomu, Y.; Takeo, T.; Andreas, K.; Jinro, U. Regional geomorphological conditions related to recent changes of glacial lakes in the Issyk-Kul basin, northern Tien Shan. Geosciences 2018, 8, 99. [Google Scholar]
- Jiang, S.; Nie, Y.; Liu, Q.; Wang, J.; Liu, L.; Hassan, J.; Liu, X.; Xu, X. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong river basin, central Himalayas, between 1988 and 2015. Remote Sens. 2018, 10, 986. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; An, C.; Zhang, X.; Li, X.; Tan, J. Hazard assessment of glacial lake outburst floods in southeast Tibet based on RS and GIS technologies. Int. J. Remote Sens. 2019, 40, 4955–4979. [Google Scholar] [CrossRef]
- Veh, G.; Korup, O.; von Specht, S.; Roessner, S.; Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Chang. 2019, 9, 379–383. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Zheng, G.; Bao, A.; Allen, S.; Ballesteros-Cánovas, J.; Stoffel, M. Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence. Sci. Bull. 2021, 66, 1270–1273. [Google Scholar] [CrossRef]
- Zheng, G.; Allen, S.K.; Bao, A.; Ballesteros-Cánovas, J.A.; Huss, M.; Zhang, G.; Li, J.; Yuan, Y.; Jiang, L.; Yu, T.; et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Chang. 2021, 11, 411–417. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high mountain Asia (1990–2018) derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Julia, N.; Mahdi, M.; Hans-Ulrich, W. Estimating spatial and temporal variability in surface kinematics of the Inylchek glacier, central Asia, using Terrasar–x data. Remote Sens. 2014, 6, 9239–9259. [Google Scholar]
- Peppa, M.; Maharjan, S.; Joshi, S.; Xiao, W.; Mills, J. Glacial lake evolution based on remote sensing time series: A case study of Tsho Rolpa in nepal. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 633–639. [Google Scholar] [CrossRef]
- Daiyrov, M.; Narama, C.; Kääb, A.; Tadono, T. Formation and outburst of the Toguz-Bulak glacial lake in the northern Teskey range, Tien Shan, Kyrgyzstan. Geosciences 2020, 10, 468. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Using a phase-congruency-based detector for glacial lake segmentation in high-temporal resolution sentinel-1a/1b data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2771–2780. [Google Scholar] [CrossRef]
- Dirscherl, M.; Dietz, A.J.; Kneisel, C.; Kuenzer, C. A Novel Method for Automated Supraglacial Lake Mapping in Antarctica Using Sentinel-1 SAR Imagery and Deep Learning. Remote Sens. 2021, 13, 197. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, F.; Zhang, M. A systematic extraction approach for mapping glacial lakes in high mountain regions of Asia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2788–2799. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of glacial lake outlines in Tibet plateau using Landsat 8 imagery and google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Baumann, F.; Jinsheng, H.E.; Karsten, S.; Peter, K.; Thomas, S. Pedogenesis, permafrost, and soil moisture as controlling factors for soil nitrogen and carbon contents across the Tibetan plateau. Glob. Chang. Biol. 2009, 15, 3001–3017. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Bierkens, M.F.P. Seasonal prediction of monsoon rainfall in three Asian river basins: The importance of snow cover on the Tibetan plateau. Int. J. Climatol. 2010, 30, 1835–1842. [Google Scholar] [CrossRef]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 468–475. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Schiemann, R.; Lüthi, D.; Schär, C. Seasonality and interannual variability of the westerly jet in the Tibetan plateau region. J. Clim. 2009, 22, 2940–2957. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space; RGI Consortium: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Nuimura, T.; Sakai, A.; Taniguchi, K.; Nagai, H.; Lamsal, D.; Tsutaki, S.; Kozawa, A.; Hoshina, Y.; Takenaka, S.; Omiya, S. The Gamdam glacier inventory: A quality-controlled inventory of Asian glaciers. Cryosphere 2015, 9, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 575–591. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett. 2009, 36, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Li, J.; Warner, T.A.; Wang, Y.; Bai, J.; Bao, A. Mapping glacial lakes partially obscured by mountain shadows for time series and regional mapping applications. Int. J. Remote Sens. 2019, 40, 615–641. [Google Scholar] [CrossRef]
- Krumwiede, B.S.; Kamp, U.; Leonard, G.J.; Kargel, J.S.; Dashtseren, A.; Walther, M. Recent glacier changes in the Mongolian Altai mountains: Case studies from Munkh Khairkhan and Tavan Bogd. In Global Land Ice Measurements from Space; Springer: Berlin/Heidelberg, Germany, 2014; pp. 481–508. [Google Scholar]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; U.S. Geological Survey: Reston, VA, USA, 2009. [CrossRef]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted evolution of glacial lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Kääb, A.; Haeberli, W. Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob. Planet. Chang. 2007, 56, 111–122. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, S.; Ding, Y.; Liu, S.; Shangguan, D. Index for hazard of glacier lake outburst flood of lake Merzbacher by satellite-based monitoring of lake area and ice cover. Glob. Planet. Chang. 2012, 107, 229–237. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, G.; Ding, Y. Changes in Merzbacher lake of Inylchek glacier and glacial flash floods in Aksu river basin, Tianshan during the period of 1903–2009. J. Glaciol. Geocryol. 2009, 31, 993–1002. [Google Scholar]
- Glazirin, G.E. A century of investigations on outbursts of the ice-dammed lake Merzbacher (central Tien Shan). Austrian J. Earth Sci. 2010, 103, 171–179. [Google Scholar]
- Wang, X.; Chai, K.; Liu, S.; Wei, J.; Jiang, Z.; Liu, Q. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan plateau. J. Glaciol. 2017, 63, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, S.; Ding, Y.; Guo, W.; Jiang, Z.; Lin, J.; Han, Y. An approach for estimating the breach probabilities of moraine-dammed lakes in the Chinese Himalayas using remote-sensing data. Nat. Hazards Earth Syst. Sci. 2012, 12, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Piao, S.; Bolch, T.; Xie, H.; Chen, D.; Gao, Y.; O’Reilly, C.M.; Shum, C.K.; Yang, K. Extensive and drastically different Alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Sellmann, P.V.; Brown, J.; Lewellen, R.I.; Mckim, H.L.; Merry, C.J. The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska; US Department of Defense, Department of the Army, Corps of Engineers, Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1975.
- Côté, M.M.; Burn, C.R. The Oriented Lakes of Tuktoyaktuk Peninsula, Western Arctic Coast, Canada: A GIS-Based Analysis. Permafr. Periglac. Process. 2010, 13, 61–70. [Google Scholar] [CrossRef]
- Hinkel, K.M.; Frohn, R.C.; Nelson, F.E.; Eisner, W.R.; Beck, R.A. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafr. Periglac. Process. 2010, 16, 327–341. [Google Scholar] [CrossRef]
- Moussavi, M.S.; Abdalati, W.; Pope, A.; Scambos, T.; Tedesco, M.; Macferrin, M.; Grigsby, S. Derivation and validation of supraglacial lake volumes on the greenland ice sheet from high-resolution satellite imagery. Remote Sens. Environ. 2016, 183, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Winsvold, S.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Hochreuther, P.; Neckel, N.; Reimann, N.; Humbert, A.; Braun, M. Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series. Remote Sens. 2021, 13, 205. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T. Mapping of glacial lakes using sentinel-1 and sentinel-2 data and a random forest classifier: Strengths and challenges. Sci. Remote Sens. 2020, 2, 100008. [Google Scholar] [CrossRef]
Size Scale (km2) | 2008 | 2012 | 2016 | 2008–2016 |
---|---|---|---|---|
≤0.1 | 12,476 (415.68 ± 81.72) | 13,803 (433.08 ± 89.82) | 15,456 (455.12 ± 97.26) | 2980 (39.44 ± 7.75) |
0.1–0.2 | 2661 (209.02 ± 11.31) | 2990 (214.66 ± 11.46) | 3304 (245.59 ± 13.36) | 643 (36.57 ± 8.97) |
0.2–1.0 | 1645 (426.76 ± 12.12) | 1893 (429.43 ± 12.07) | 2177 (477.31 ± 13.65) | 532 (50.55 ± 13.43) |
1.0–3.0 | 196 (226.42 ± 2.20) | 218 (234.43 ± 2.20) | 273 (249.72 ± 2.40) | 77 (23.30 ± 6.22) |
≥3.0 | 38 (142.27 ± 0.68) | 39 (143.88 ± 0.66) | 39 (149.64 ± 0.69) | 1 (7.37 ± 2.03) |
Total | 17,016 (1420.15 ± 232.76) | 18,943 (1455.48 ± 256.46) | 21,249 (1577.38 ± 288.82) | 4233 (157.23 ± 25.77) |
No. | Sub-Basins | Period | Temperature (°C) | Precipitation (mm) | ||||
---|---|---|---|---|---|---|---|---|
Average | Rate (°C/a) | Significance | Average | Rate (mm/a) | Significance | |||
1 | Tianshan | 1979–2016 | 5.52 | 0.016 | <0.001 | 344.4 | 1.07 | 0.053 |
2 | AmuDayra | 1979–2016 | 7.66 | 0.019 | 0.002 | 319.5 | 1.32 | <0.001 |
3 | Tarim | 1979–2016 | 6.58 | 0.046 | <0.001 | 213.7 | 0.54 | 0.045 |
4 | Indus | 1979–2016 | 7.56 | 0.051 | <0.001 | 179.6 | −1.42 | 0.082 |
5 | Inner | 1979–2016 | 8.63 | 0.040 | 0.025 | 452.1 | 0.08 | 0.311 |
6 | Ganges | 1979–2016 | 10.16 | 0.038 | <0.001 | 196.2 | −1.49 | 0.096 |
7 | Brahmaputra | 1991–2016 | 9.98 | 0.025 | <0.001 | 541.3 | −1.63 | 0.150 |
8 | Salween | 1979–2016 | 10.52 | 0.029 | <0.001 | 639.2 | 0.67 | <0.001 |
9 | Mekong | 1991–2016 | 11.21 | 0.029 | <0.001 | 688.3 | 0.85 | 0.063 |
10 | Yangtze | 1979–2016 | 9.64 | 0.030 | 0.005 | 735.2 | 1.15 | 0.213 |
11 | Qaidam | 1979–2016 | 8.08 | 0.037 | 0.005 | 154.6 | 0.19 | <0.001 |
12 | Hexi | 1979–2016 | 8.37 | 0.036 | <0.001 | 445.3 | −0.21 | 0.176 |
13 | Yellow | 1983–2016 | 7.95 | 0.033 | <0.001 | 476.5 | 0.07 | 0.055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Chen, F.; Zhao, H.; Wang, J.; Wang, N. Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis. Remote Sens. 2021, 13, 3757. https://doi.org/10.3390/rs13183757
Zhang M, Chen F, Zhao H, Wang J, Wang N. Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis. Remote Sensing. 2021; 13(18):3757. https://doi.org/10.3390/rs13183757
Chicago/Turabian StyleZhang, Meimei, Fang Chen, Hang Zhao, Jinxiao Wang, and Ning Wang. 2021. "Recent Changes of Glacial Lakes in the High Mountain Asia and Its Potential Controlling Factors Analysis" Remote Sensing 13, no. 18: 3757. https://doi.org/10.3390/rs13183757