Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method
<p>The little global map (<b>a</b>) and configuration of the WRF model domain with a grid spacing of 3 km (<b>b</b>). The colors represent model terrain heights. The abbreviations for the Henan, Anhui, Hubei, Chongqing, Guizhou, Hunan, Jiangxi, Zhejiang, and Fujian Provinces are HeN, AH, HuB, CQ, GZ, HuN, JX, ZJ, and FJ, respectively.</p> "> Figure 2
<p>The total cost function and summation of gradient norm as a function of the number of iterations in single-analysis experiments. The red solid line is the cost function (left Y-axis), and the blue dashed line is the gradient norm (right Y-axis). (<b>a</b>,<b>b</b>) Lightning data assimilation by 3DVAR (LDA_3DVAR) and hybrid 3DEnVAR (LDA_Hybrid_cov06), (<b>c</b>,<b>d</b>) radar data assimilation by 3DVAR (RDA_3DVAR) and hybrid 3DEnVAR (RDA_Hybrid_cov06), and (<b>e</b>,<b>f</b>) the combined lightning and radar data assimilation by 3DVAR (LRDA_3DVAR) and hybrid 3DEnVAR (LRDA_Hybrid_cov06).</p> "> Figure 3
<p>The observed maximum radar reflectivity (MaxRadRef) and analyzed maximum reflectivity (MaxRef) horizontal wind vectors at z = 4 km at 0000 UTC on 30 June 2018 (analysis time). (<b>a</b>) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain, (<b>b</b>) control run (CTL), and for single-analysis experiments: (<b>c</b>,<b>d</b>) lightning data assimilation by 3DVAR and hybrid 3DEnVAR, (<b>e</b>,<b>f</b>) radar data assimilation by 3DVAR and hybrid 3DEnVAR, (<b>g</b>,<b>h</b>) and the combined lightning and radar data assimilation by 3DVAR and hybrid 3DEnVAR. The white background area is the range of radar scanning in (<b>a</b>). The black line AB in (<b>a</b>) denotes the locations of the vertical cross-sections for subsequent figures.</p> "> Figure 4
<p>Horizontal increments of vertical velocity (shaded contours) and wind vector (black vector arrows) from single-analysis experiments at z = 4 km (<b>a</b>–<b>c</b>) and vertical-cross sections of increments of vertical velocity and wind vector (<b>e</b>–<b>f</b>) at 0000 UTC 30 June 2018 (analysis time) along line AB in (<b>a</b>). The line AB in (<b>a</b>) is the same position as the line AB in <a href="#remotesensing-13-03090-f003" class="html-fig">Figure 3</a>a. Lightning data assimilation by hybrid 3DEnVAR (<b>b</b>,<b>e</b>), radar data assimilation by 3DVAR (<b>a</b>,<b>d</b>) and hybrid 3DEnVAR (<b>c</b>,<b>f</b>). The black lines AB in (<b>a</b>) denote the locations of the vertical cross-sections for (<b>d</b>–<b>f</b>).</p> "> Figure 5
<p>The single-analysis increments of water vapor mixing ratio (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>v</mi> </msub> </mrow> </semantics></math>) from 0 eta level to 15 eta level (<b>a</b>–<b>f</b>) were summed; graupel mixing ratio (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>g</mi> </msub> </mrow> </semantics></math>) at 500 hPa (<b>g</b>,<b>j</b>), snow mixing ratio (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>s</mi> </msub> </mrow> </semantics></math>) at 500 hPa (<b>h</b>,<b>k</b>), and rain mixing ratio (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>r</mi> </msub> </mrow> </semantics></math>) at 700 hPa (<b>i</b>,<b>l</b>) at 0000 UTC 30 June 2018 (analysis time). (<b>a</b>) Lightning data assimilation by 3DVAR. (<b>d</b>,<b>g</b>–<b>i</b>) Lightning data assimilation by hybrid 3DEnVAR. (<b>b</b>,<b>e</b>) Radar data assimilation by 3DVAR and hybrid 3DEnVAR. (<b>c</b>) The combined lightning and radar data assimilation by 3DVAR, and (<b>f</b>,<b>j</b>–<b>l</b>) uses hybrid 3DEnVAR.</p> "> Figure 6
<p>Vertical cross-sections of analysis increments of <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>v</mi> </msub> </mrow> </semantics></math> (blue shaded contour lines), <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>g</mi> </msub> </mrow> </semantics></math> (dark orchid contour lines), <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>s</mi> </msub> </mrow> </semantics></math> (orange contour lines) and <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mi>r</mi> </msub> </mrow> </semantics></math> (forest green contour lines) from single-analysis experiments at 0000 UTC 30 June 2018 (analysis time) along line AB in <a href="#remotesensing-13-03090-f003" class="html-fig">Figure 3</a>a. (<b>a</b>,<b>d</b>) Lightning data assimilation by 3DVAR and hybrid 3DEnVAR, (<b>b</b>,<b>e</b>) radar data assimilation by 3DVAR and hybrid 3DEnVAR, and (<b>c</b>,<b>f</b>) the combined lightning and radar data assimilation by 3DVAR and hybrid 3DEnVAR.</p> "> Figure 7
<p>The observed maximum radar reflectivity and forecasted maximum reflectivity and horizontal wind vectors from single-analysis experiments at 0300 UTC on 30 June 2018 (i.e., 3 h forecast). (<b>a</b>) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain (OBS), (<b>b</b>) control run (CTL), lightning (<b>c</b>,<b>f</b>), radar (<b>d</b>,<b>g</b>), and combined lightning and radar data assimilation (<b>e</b>,<b>h</b>) by 3DVAR (<b>c</b>–<b>e</b>) and hybrid 3DEnVAR (<b>f</b>–<b>h</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The combined lightning and radar data assimilation by hybrid 3DEnVAR (<b>i</b>,<b>j</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 8
<p>The observed and forecasted 6 h accumulated precipitation for single-analysis experiments from 0000 UTC to 0600 UTC on 30 June 2018. (<b>a</b>) Observed precipitation (OBS), (<b>b</b>) control run (CTL), lightning (<b>c</b>,<b>f</b>), radar (<b>d</b>,<b>g</b>) and the combined lightning and radar data assimilation (<b>e</b>,<b>h</b>) by 3DVAR (<b>c</b>–<b>e</b>) and hybrid 3DEnVAR (<b>f</b>–<b>h</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The combined lightning and radar data assimilation by hybrid 3DEnVAR (<b>i</b>,<b>j</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 9
<p>The equitable threat score (ETS) (<b>a1</b>–<b>c3</b>) of the forecasted hourly accumulated precipitation for single-analysis experiments from 0000 UTC to 0600 UTC on 30 June 2018. The performance diagram (<b>d1</b>–<b>d3</b>,<b>e1</b>–<b>e3</b>) of 1 and 3 h forecast hourly accumulated precipitation for single-analysis experiments from 0000 UTC to 0100 UTC and 0200 UTC to 0300 UTC on 30 June 2018. (<b>a1</b>–<b>a3</b>) The lightning data assimilation experiments (LDA), (<b>b1</b>–<b>b3</b>) the radar data assimilation experiments (RDA), and (<b>c1</b>–<b>c3</b>) the combined lightning and radar data assimilation experiments. (<b>a1</b>,<b>b1</b>,<b>c1</b>,<b>d1</b>,<b>e1</b>) the 1 mm threshold, (<b>a2</b>,<b>b2</b>,<b>c2</b>,<b>d2</b>,<b>e2</b>) the 5 mm threshold, and (<b>a3</b>,<b>b3</b>,<b>c3</b>,<b>d3</b>,<b>e3</b>) the 10 mm threshold. In each performance diagram plot, the lower-left corner represents no forecast skill and, similarly, the upper-right corner indicates perfect skill. Purple curves represent the critical success index (CSI), and the black dashed lines represent the frequency bias. The colored dots show the results for the experiments with legends shown at the bottom of the figure, the number inside each dot represents the forecast time in hours.</p> "> Figure 10
<p>As in <a href="#remotesensing-13-03090-f007" class="html-fig">Figure 7</a>, but for the cycling analysis experiments at 0400 UTC on 30 June 2018 (i.e., 3 h forecast). (<b>a</b>) Observed maximum radar reflectivity interpolated onto the 3 km simulation domain (OBS), (<b>b</b>) control run (CTL), lightning (<b>c</b>,<b>f</b>), radar (<b>d</b>,<b>g</b>) and the combined lightning and radar data assimilation (<b>e</b>,<b>h</b>) by 3DVAR (<b>c</b>–<b>e</b>) and hybrid 3DEnVAR (<b>f</b>–<b>h</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The combined lightning and radar data assimilation by hybrid 3DEnVAR (<b>i</b>,<b>j</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 11
<p>As in <a href="#remotesensing-13-03090-f008" class="html-fig">Figure 8</a>, but for the cycling analysis experiments from 0100 UTC to 0700 UTC on 30 June 2018. (<b>a</b>) Observed precipitation (OBS), (<b>b</b>) control run (CTL), (<b>b</b>) control run (CTL), lightning (<b>c</b>,<b>f</b>), radar (<b>d</b>,<b>g</b>) and the combined lightning and radar data assimilation (<b>e</b>,<b>h</b>) by 3DVAR (<b>c</b>–<b>e</b>) and hybrid 3DEnVAR (<b>f</b>–<b>h</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>. The combined lightning and radar data assimilation by hybrid 3DEnVAR (<b>i</b>,<b>j</b>) showed that <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>, respectively.</p> "> Figure 12
<p>As in <a href="#remotesensing-13-03090-f009" class="html-fig">Figure 9</a>, but for the cycling analysis experiments. (<b>a1</b>–<b>a3</b>) the lightning data assimilation experiments (LDA), (<b>b1</b>–<b>b3</b>) the radar data assimilation experiments (RDA), (<b>c1</b>–<b>c3</b>) the combined lightning and radar data assimilation experiments. (<b>a1</b>,<b>b1</b>,<b>c1</b>,<b>d1</b>,<b>e1</b>) the 1 mm threshold, (<b>a2</b>,<b>b2</b>,<b>c2</b>,<b>d2</b>,<b>e2</b>) the 5 mm threshold, (<b>a3</b>,<b>b3</b>,<b>c3</b>,<b>d3</b>,<b>e3</b>) the 10 mm threshold.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Lightning Data
2.2. Radar Data
2.3. Data Assimilation Methods
2.3.1. DVAR Method
2.3.2. Dual-Resolution Hybrid 3DEnVAR Method
3. Experimental Design and Model Description
3.1. Experimental Design
3.2. Model Description
4. Results
4.1. Analysis Field of Single-analysis Experiments
4.1.1. Radar Reflectivity and Wind Field
4.1.2. Water Vapor and Hydrometers
4.2. Forecast Field
4.2.1. The Single-analysis Experiments
4.2.2. The Cycling Analysis Experiments
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stensrud, D.J.; Xue, M.; Wicker, L.J.; Kelleher, K.E.; Foster, M.P.; Schaefer, J.T.; Schneider, R.S.; Benjamin, S.; Weygandt, S.S.; Ferree, J.T.; et al. Convective-scale Warn-On-Forecast system: A vision for 2020. Bull. Am. Meteorol. Soc. 2009, 90, 1487–1499. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H. Radar data assimilation with WRF 4D-Var. PartII: Comparison with 3D-Var for a squall line over the U.S. Great plains. Mon. Weather Rev. 2013, 141, 2245–2264. [Google Scholar] [CrossRef]
- Sun, J. Convective-scale assimilation of radar data: Progress and challenges. Q. J. R. Meteorol. Soc. 2005, 131, 3439–3463. [Google Scholar] [CrossRef]
- Pu, Z.; Li, X.; Sun, J. Impact of airborne doppler radar data assimilation on the numerical simulation of intensity changes of hurricane dennis near a landfall. J. Atmos. Sci. 2009, 66, 3351–3365. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sun, J.; Fan, S.; Huang, X.-Y. Indirect assimilation of radar reflectivity with wrf 3d-var and its impact on prediction of four summertime convective events. J. Appl. Meteorol. Climatol. 2013, 52, 889–902. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Burgess, D.W.; Mazur, V.; Rust, W.D.; Taylor, W.L.; Johnson, B.C. Lightning Rates Relative to Tornadic Storm Evolution on 22 May 1981. J. Atmos. Sci. 1989, 46, 221–251. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Qie, X.; Guo, C.; Yan, M.; Zhang, G. Lightning data and study of thunderstorm nowcasting. Acta Meteorol. Sin. 1993, 7, 244–256. [Google Scholar]
- Schultz, C.J.; Petersen, W.A.; Carey, L.D. Lightning and Severe Weather: A Comparison between Total and Cloud-to-Ground Lightning Trends. Weather. Forecast. 2011, 26, 744–755. [Google Scholar] [CrossRef]
- Goodman, S.J. The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res. 2013, 125–126, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of chinese geostationary weather satellites, fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Xu, W.; Adler, R.F.; Wang, N.-Y. Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships. J. Appl. Meteorol. Climatol. 2013, 52, 213–229. [Google Scholar] [CrossRef]
- Minjarez-Sosa, C.M.; Castro, C.L.; Cummins, K.L.; Waissmann, J.; Adams, D.K. An Improved QPE over Complex Terrain Employing Cloud-to-Ground Lightning Occurrences. J. Appl. Meteorol. Climatol. 2017, 56, 2489–2507. [Google Scholar] [CrossRef]
- Minjarez-Sosa, C.; Waissman, J.; Castro, C.; Adams, D. Algorithm for Improved QPE over Complex Terrain Using Cloud-to-Ground Lightning Occurrences. Atmosphere 2019, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.D.; Weinman, J.A.; Karyampudi, V.; Olson, W.S.; Lee, A.C.L. The effect of assimilating rain rates derived from satellites and lightning on forecasts of the 1993 superstorm. Mon. Weather Rev. 1999, 127, 1433–1457. [Google Scholar] [CrossRef]
- Chang, D.E.; Weinman, J.A.; Morales, C.A.; Olson, W.S. The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm. Mon. Weather Rev. 2001, 129, 1809–1833. [Google Scholar] [CrossRef]
- Pessi, A.T.; Businger, S. The Impact of Lightning Data Assimilation on a Winter Storm Simulation over the North Pacific Ocean. Mon. Weather Rev. 2009, 137, 3177–3195. [Google Scholar] [CrossRef] [Green Version]
- Marchand, M.R.; Fuelberg, H.E. Assimilation of Lightning data using a nudging method involving low-level warming. Mon. Weather Rev. 2014, 142, 4850–4871. [Google Scholar] [CrossRef]
- Williams, E.R. Large-scale charge separation in thunderclouds. J. Geophys. Res. 1985, 90, 6013. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 1992, 97, 9919–9933. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; Yin, J.; Daosheng, X.; Dai, G.; Chen, L. An improvement of convective precipitation nowcasting through lightning data dynamic nudging in a cloud-resolving scale forecasting system. Atmos. Res. 2020, 242, 104994. [Google Scholar] [CrossRef]
- Gan, R.; Yang, Y.; Qiu, X.; Wang, R.; Qiu, X.; Zhu, L. Assimilation of the Maximum Vertical Velocity Converted from Total Lightning Data through the EnSRF Method. J. Geophys. Res. Atmos. 2021, 126, e2020JD034300. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Chronis, T.G.; Anagnostou, E.N. Improving convective precipitation forecasting through assimilation of regional lightning measurements in a mesoscale model. Mon. Weather Rev. 2005, 133, 1961–1977. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.; Serpetzoglou, E.; Anagnostou, E.N. Evaluating the impact of lightning data assimilation on mesoscale model simulations of a flash flood inducing storm. Atmos. Res. 2009, 94, 715–725. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; MacGorman, D.R. A lightning data assimilation technique for mesoscale forecast models. Mon. Weather Rev. 2007, 135, 1732–1748. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Defer, E.; Bousquet, O. Study of a heavy precipitation event over southern France, in the frame of HYMEX project:observational analysis and model results using assimilation of lightning. Atmos. Res. 2013, 134, 45–55. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Kotroni, V.; Lagouvardos, K. WRF-LTNGDA: A lightning data assimilation technique implemented in the WRF model for improving precipitation forecasts. Environ. Model. Softw. 2016, 76, 54–68. [Google Scholar] [CrossRef]
- Fierro, A.O.; Reisner, J.M. High resolution simulation of the electrification and lightning of Hurricane Rita during the period of rapid intensification. J. Atmos. Sci. 2011, 68, 477–494. [Google Scholar] [CrossRef]
- Fierro, A.O.; Mansell, E.R.; Ziegler, C.L.; MacGorman, D. Application of a lightning data assimilation technique in the WRF-ARW Model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Weather Rev. 2012, 140, 2609–2627. [Google Scholar] [CrossRef]
- Fierro, A.; Gao, J.; Ziegler, C.L.; Mansell, E.R.; MacGorman, D.; Dembek, S.R. Evaluation of a cloud scale lightning data assimilation technique and a 3DVAR method for the analysis and short term forecast of the 29 June 2012 derecho event. Mon. Weather Rev. 2014, 142, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.; Clark, A.J.; Mansell, E.R.; MacGorman, D.; Dembek, S.R.; Ziegler, C.L. Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States. Mon. Weather Rev. 2015, 143, 757–777. [Google Scholar] [CrossRef]
- Fierro, A.O.; Gao, J.; Ziegler, C.L.; Calhoun, K.M.; Mansell, E.R.; MacGorman, D.R. MacGorman. Assimilation of flash extent data in the variational framework at convection-allowing scales: Proofof-concept and evaluation for the short term forecast of the 24 May 2011 tornado outbreak. Mon. Weather Rev. 2016, 144, 4373–4393. [Google Scholar] [CrossRef]
- Fierro, A.O.; Wang, Y.; Gao, J.; Mansell, E.R. Variational assimilation of radar data and GLM lightning-derived water vapor for the short-term forecasts of high-impact convective events. Mon. Weather Rev. 2019, 147, 4045–4069. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Liu, D.; Zhang, D.; Yao, W.; Wang, C. A case study of assimilating lightning-proxy relative humidity with WRF-3DVAR. Atmosphere 2017, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Fierro, A.O.; Wang, Y.; Gao, J.; Mansell, E.R. Exploring the Assimilation of GLM Derived Water Vapor Mass in a Cycled 3DVAR Framework for the Short-term Forecasts of High Impact Convective Events. Mon. Weather Rev. 2019, 148, 1005–1028. [Google Scholar] [CrossRef]
- Liu, P.; Yang, Y.; Gao, J.; Wang, Y.; Wang, C. An Approach for Assimilating FY4 Lightning and Cloud Top Height Data Using 3DVAR. Front. Earth Sci. 2020, 8, 288. [Google Scholar] [CrossRef]
- Gan, R.; Yang, Y.; Xie, Q.; Lin, E.; Wang, Y.; Liu, P. Assimilation of radar and cloud-to-ground lightning data using WRF-3DVar combined with the physical initialization method A case study of a mesoscale convective system. J. Meteorol. Res. 2020, 35, 329–342. [Google Scholar] [CrossRef]
- Qie, X.; Zhu, R.; Yuan, T.; Wu, X.; Li, W.; Liu, D. Application of totallightning data assimilation in a mesoscale convective system based on the WRF model. Atmos. Res. 2014, 14, 255–266. [Google Scholar] [CrossRef]
- Mansell, E.R. Storm-scale ensemble kalman filter assimilation of total lightning flash-extent data. Mon. Weather Rev. 2014, 142, 3683–3695. [Google Scholar] [CrossRef]
- Allen, B.J.; Mansell, E.R.; Dowell, D.C.; Deierling, W. Assimilation of pseudo-GLM data using the ensemble Kalman filter. Mon. Weather Rev. 2016, 144, 3465–3486. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Cheng, W.Y.Y.; Zhao, T.; Xu, M.; Liu, Y.; Shen, S.; Calhoun, K.M.; Fierro, A.O. Improving lightning and precipitation prediction of severe convection using lightning data Assimilation with NCAR WRF-RTFDDA. J. Geophys. Res. Atmos. 2017, 122, 12–296. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Zhao, T.; Liu, Y.; Xu, M.; Shen, S.; Jiang, Y.; Yang, H.; Feng, S. Continuous assimilation of lightning data using time-lagged ensembles for a convection allowing numerical weather prediction model. J. Geophys. Res. Atmos. 2018, 123, 9652–9673. [Google Scholar] [CrossRef]
- Chen, Z.; Qie, X.; Liu, D.; Xiong, Y. Lightning data assimilation with comprehensively nudging water contents at cloud-resolving scale using WRF model. Atmos. Res. 2019, 221, 72–87. [Google Scholar] [CrossRef]
- Kong, R.; Xue, M.; Fierro, A.O.; Jung, Y.; Liu, C.; Mansell, E.R.; MacGorman, D.R. Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI EnKF for the Analysis and Short-Term Forecast of a Mesoscale Convective System. Mon. Weather Rev. 2020, 148, 2111–2133. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, S.G.; Dévényi, D.; Weygandt, S.S.; Brundage, K.J.; Brown, J.M.; Grell, G.A.; Manikin, G.S. An Hourly Assimilation–Forecast Cycle: The RUC. Mon. Weather. Rev. 2004, 132, 495–518. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, C. Improving forecasting of strong convection by assimilating cloud-to-ground lightning data using the physical initialization method. Atmos. Res. 2014, 150, 31–41. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhu, K. Assimilation of chinese doppler radar and lightning data using WRF-GSI: A Case study of mesoscale convective system. Adv. Meteorol. 2015, 2015, 763919. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, Z.; Han, W.; He, J.; Chen, M. Case Study of a Retrieval Method of 3D Proxy Reflectivity from FY-4A Lightning Data and Its Impact on the Assimilation and Forecasting for Severe Rainfall Storms. Remote Sens. 2020, 12, 1165. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Saunders, C.P.R.; Keith, W.D.; Mitzeva, R.P. The effect of liquid water on thunderstorm charging. J. Geophys. Res. 1991, 96, 11007–11017. [Google Scholar] [CrossRef]
- Yuan, T.; Qie, X. Study on lightning activity and precipitation characteristics before and after the onset of the South China Sea summer monsoon. J. Geophys. Res. 2008, 113, D14101. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Some observing system simulation experiments with a hybrid 3DEnVAR system for storm-scale radar data assimilation. Mon. Weather Rev. 2014, 142, 3326–3346. [Google Scholar] [CrossRef]
- Gao, J.; Fu, C.; Stensrud, D.J.; Kain, J.S. OSSEs for an ensemble 3DVAR data assimilation system with radar observations of convective storms. J. Atmos. Sci. 2016, 73, 2403–2426. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Skinner, P.S.; Knopfmeier, K.; Jones, T.; Creager, G.; Wicker, L.J. Test of a Weather-Adaptive Dual-Resolution Hybrid Warn-on-Forecast Analysis and Forecast System for Several Severe Weather Events. Weather Forecast. 2019, 73, 2403–2426. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Shapiro, A.; Droegemeier, K.K. A variational analysis for the retrieval of three-dimensional mesoscale wind fields from two Doppler radars. Mon. Weather Rev. 1999, 127, 2128–2142. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Tong, M.J.; Xue, M. Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Weather Rev. 2005, 133, 1789–1807. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D.J.; Gao, J.D. Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Weather Rev. 2010, 138, 1250–1272. [Google Scholar] [CrossRef]
- Lai, A.; Gao, J.; Koch, S.E.; Wang, Y.; Pan, S.; Fierro, A.O.; Min, J. Assimilation of Radar Radial Velocity, Reflectivity and Pseudo Water Vapor for Convective-scale NWP in a Variational Framework. Mon. Weather Rev. 2019, 147, 2877–2900. [Google Scholar] [CrossRef]
- Lai, A.; Min, J.; Gao, J.; Ma, H.; Cui, C.; Xiao, Y.; Wang, Z. Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events. Atmosphere 2020, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.; Min, J.; Gao, J.; Ma, H.; Cui, C.; Xiao, Y.; Wang, Z. Impacts of the radar data assimilation frequency and large-scale constraint on the short-term precipitation forecast of a severe convection case. Atmos. Res. 2021, 257, 105590. [Google Scholar] [CrossRef]
- Peterson, M. Research applications for the Geostationary Lightning Mapper operational lightning flash data product. J. Geophys. Res. Atmos. 2019, 124, 10205–10231. [Google Scholar] [CrossRef]
- Xu, Q.; Nai, K. An Adaptive Dealiasing Method Based on Variational Analysis for Radar Radial Velocities Scanned with Small Nyquist Velocities. J. Atmos. Ocean. Technol. 2012, 29, 1723–1729. [Google Scholar] [CrossRef]
- Xu, Q.; Nai, K.; Wei, L.; Zhang, P.; Liu, S.; Parrish, D. A VAD-Based Dealiasing Method for Radar Velocity Data Quality Control. J. Atmos. Ocean. Technol. 2011, 28, 50–62. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M. An efficient dual-resolution approach for ensemble DA and tests with assimilated Doppler radar data. Mon. Weather Rev. 2008, 136, 945–963. [Google Scholar] [CrossRef]
- Gao, J.; Xue, M.; Brewster, K.; Droegemeier, K.K. A threedimensional data analysis method with recursive filter for Doppler radars. J. Atmos. Ocean. Technol. 2004, 21, 457–469. [Google Scholar] [CrossRef]
- Gao, J.; Smith, T.M.; Stensrud, D.J.; Fu, C.; Calhoun, K.; Manross, K.L.; Brogden, J.; Lakshmanan, V.; Wang, Y.; Thomas, K.W.; et al. A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings. Weather Forecast. 2013, 28, 727–745. [Google Scholar] [CrossRef]
- Xie, Q.; Yang, Y.; Qiu, X.; Ma, Y.; Lai, A.; Lin, E.; Mai, X. 3D-Var Assimilation of GTS observation with the gravity wave drag scheme improves summer high resolution climate simulation over the Tibetan Plateau. Clim. Dyn. 2021. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.R. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Q. J. R. Meteorol. Soc. 2010, 136, 1481–1496. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Brill, K.F.; Mesinger, F. Applying a general analytic method for assessing bias sensitivity to bias-adjusted threat and equitable threat scores. Weather Forecast. 2009, 24, 1748–1754. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather. Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.J.; Gallus, W.A.; Weisman, M.L. eighborhoodbased verification of precipitation forecasts from convectionallowing NCAR WRF Model simulations and the operational NAM. Weather Forecast. 2010, 25, 1495–1509. [Google Scholar] [CrossRef]
Experiments | Data Assimilated | Data Assimilation Methods |
---|---|---|
CTL | None | None |
LDA_3DVAR | FY-4A LMI | 3DVAR method |
LDA_Hybrid_cov06 | Hybrid 3DEnVAR method, , | |
RDA_3DVAR | Radar reflectivity and radial velocity | 3DVAR method |
RDA_Hybrid_cov06 | Hybrid 3DEnVAR method, , | |
LRDA_3DVAR | FY-4A LMI, radar reflectivity, and radial velocity | 3DVAR method |
LRDA_Hybrid_cov06 | Hybrid 3DEnVAR method, , ) | |
LRDA_Hybrid_cov08 | Hybrid 3DEnVAR method, (, | |
LRDA_Hybrid_cov10 | Hybrid 3DEnVAR method, , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Yang, Y.; Lai, A.; Wang, Y.; Fierro, A.O.; Gao, J.; Wang, C. Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method. Remote Sens. 2021, 13, 3090. https://doi.org/10.3390/rs13163090
Liu P, Yang Y, Lai A, Wang Y, Fierro AO, Gao J, Wang C. Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method. Remote Sensing. 2021; 13(16):3090. https://doi.org/10.3390/rs13163090
Chicago/Turabian StyleLiu, Peng, Yi Yang, Anwei Lai, Yunheng Wang, Alexandre O. Fierro, Jidong Gao, and Chenghai Wang. 2021. "Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method" Remote Sensing 13, no. 16: 3090. https://doi.org/10.3390/rs13163090
APA StyleLiu, P., Yang, Y., Lai, A., Wang, Y., Fierro, A. O., Gao, J., & Wang, C. (2021). Assimilating FY-4A Lightning and Radar Data for Improving Short-Term Forecasts of a High-Impact Convective Event with a Dual-Resolution Hybrid 3DEnVAR Method. Remote Sensing, 13(16), 3090. https://doi.org/10.3390/rs13163090