Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil
<p>The track of tropical storm Ampil (violet dot line) covered by the scanning orbits (red dots) in the model domain overlapped by terrain height (filled colors, unit: m).</p> "> Figure 2
<p>(<b>a</b>,<b>c</b>,<b>e</b>) The 850 hPa circulation including geopotential height (lines, unit: dagpm), specific humidity (shading, unit: g/kg), and wind field (vectors, unit: m/s) and (<b>b</b>,<b>d</b>,<b>f</b>) the 500 hPa circulation including geopotential height (lines, unit: dagpm) and wind field (vectors, unit: m/s) at (<b>a</b>,<b>b</b>) 0000 UTC, (<b>c</b>,<b>d</b>) 0600 UTC, (<b>e</b>,<b>f</b>) 1200 UTC on 22 July 2018. Red “C” represents the center of tropical storm Ampil at each corresponding time.</p> "> Figure 3
<p>Distribution of GTS observations. Satellite atmospheric motion vector (SATOB), aircraft data (Airep), radiosondes (SOUND).</p> "> Figure 4
<p>(<b>a</b>) The OMB (unit: K), (<b>b</b>) the OMA (unit: K), and (<b>c</b>) the SI index (value > 5 K) at 0600 UTC on 22 July 2018.</p> "> Figure 5
<p>The scatter diagrams of channel 11 observed versus simulated brightness temperature (unit: K) of background (<b>a</b>) before the bias correction, (<b>b</b>) after the bias correction, and (<b>c</b>) observed versus simulated brightness temperature of the analysis.</p> "> Figure 6
<p>The frequency distribution histogram of (<b>a</b>) OMB without bias correction, (<b>b</b>) OMB with bias correction, and (<b>c</b>) OMA with bias correction of channel 11.</p> "> Figure 7
<p>(<b>a</b>) The numbers, (<b>b</b>) the means, and (<b>c</b>) the standard deviations of the used channels.</p> "> Figure 8
<p>Vertical increment RMSE profile of specific humidity (unit: 0.1 g/kg).</p> "> Figure 9
<p>Geopotential height increment of (<b>a</b>) GTS, (<b>b</b>) MWHS2, and (<b>c</b>) the difference between GTS and MWHS2.</p> "> Figure 10
<p>Relative humidity increment of (<b>a</b>) GTS, (<b>b</b>) MWHS2, and (<b>c</b>) the difference between GTS and MWHS2.</p> "> Figure 11
<p>Twenty-four-hour precipitation distribution of (<b>a</b>) observation, (<b>b</b>) GTS, and (<b>c</b>) MWHS2.</p> "> Figure 12
<p>FSS score of GTS and MWHS2.</p> "> Figure 13
<p>The deterministic forecast of (<b>a</b>) tracks and (<b>b</b>) track errors (unit: km).</p> ">
Abstract
:1. Introduction
2. Satellite Radiance Data and WRFDA Assimilation System
2.1. MWHS2/FY-3D Data
2.2. The 3DVAR Method in the WRFDA Assimilation System
2.3. The Build of the MWHS2/FY-3D Aassimilation Modle
- (1)
- Abnormal radiance data, such as those less than 50 K and those greater than 550 K, are preliminarily eliminated after reading data, since low brightness temperature and high temperature is not physical for brightness temperature [13].
- (2)
- The observation residuals (the absolute value of the difference between the observed brightness temperature and the simulated one) are excluded when exceeding a specific threshold (15 K) [13].
- (3)
- The observations with residuals greater than after the bias correction are discarded, where is the standard deviation of brightness temperature observation, which is estimated by offline calculation. (2) and (3) are applied for the quality control, since it is difficult to obtain the optimal analysis for the data assimilation system when the difference between the observation and background is too large.
- (4)
- In cloud detection, the definition of SI index is the difference of brightness temperature between channel 1 and channel 10. Those data with an SI index greater than 5 K are dismissed. In addition, the cloud liquid water path (CLWP) values diagnosed from the background over a specific threshold (0.2 g/m2) are rejected. The SI index shows the extent to which the radiance pixels are affected by the cloud emissivity effect.
- (5)
- The observations with comparatively complex types of surface are excluded, since there are large estimation errors for the surface emissivity for those complex types of surface.
3. Experimental Design
4. Results
4.1. Radiance Simulation
4.2. Bias Correction
4.3. Frequency Distribution Histogram
4.4. Statistics for All the Channels
4.5. Humidity Increment RMSE
4.6. Geopotential Height Increment
4.7. Relative Humidity Increment
4.8. 24-Hour Accumulated Precipitation
4.8.1. Rain Belt Distribution
4.8.2. Fraction Skill Score (FSS) Evaluation
4.9. Track Forecast
5. Conclusions and Discussion
- (1)
- After assimilating FY-3D MWHS2 radiance data under clear-sky conditions, the notable error in the background field is strikingly reduced, and the simulated radiance of FY-3D MWHS2 matches better with the observation. By comparing the scatter diagram, the frequency distribution histogram, and the statistical line chart, it is found that the assimilation of FY-3D MWHS2 radiance data is effective.
- (2)
- Compared with the assimilation of the GTS data, it is found that the increment of specific humidity below the 30th layer is obvious with the assimilation of the FY-3D MWHS2 radiance data. Besides, the 500 hPa geopotential height increment and the 850 hPa relative humidity increment are preferable for the maintenance of the typhoon.
- (3)
- In the simulated 24-h precipitation, the position of rainfall center in the experiment with FY-3D MWHS2 assimilation shows better correspondence with the observation, whereas the rain belt in Shandong is overestimated, and the one in Tianjin is underestimated. By the quantitative FSS, the score of the FY-3D MWHS2 experiment is above 0.85 in all thresholds. In the final 48-h forecast, compared with the GTS experiment, the track error of the FY-3D MWHS2 experiment is smaller with a maximal error of roughly 90 km.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, J.; Meng, D.; Zhao, Q.; Cao, W.; Xu, Z. Nonconvex-Sparsity and Nonlocal-Smoothness-Based Blind Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [Google Scholar] [CrossRef]
- Shen, F.; Xu, D.; Min, J. Effect of momentum control variables on assimilating radar observations for the analysis and forecast for Typhoon Chanthu (2010). Atmos. Res. 2019, 230, 104622. [Google Scholar] [CrossRef]
- Sawada, M.; Ma, Z.Z.; Mehra, A. Impacts of assimilating high-resolution atmospheric motion vectors derived from Himawari-8 on tropical cyclone forecast in HWRF. Mon. Weather Rev. 2019, 147, 3721–3740. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Huang, X.; Min, J.; Wang, H. Impact of Assimilating IASI Radiance Observations on Forecasts of Two Tropical Cyclones. Meteorol. Atmos. Phys. 2013, 122, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Shen, F.; Min, J. Effect of background error tuning on assimilating radar radial velocity observations for the forecast of hurricane tracks and intensities. Meteorol. Appl. 2020, 27, e1820. [Google Scholar] [CrossRef] [Green Version]
- Ridal, M.; Dahlbom, M. Assimilation of multinational radar reflectivity data in a mesoscale model: A proof of concept. J. Appl. Meteorol. Climatol. 2017, 56, 1739–1750. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Gao, F.; Child, P.; Min, J. Impact of Assimilating GOES-Imager Clear-sky Radiance with a Rapid Refresh Assimilation System for Convection-Permitting forecast over Mexico. J. Geophys. Res. Atmos. 2017, 122, 5472–5490. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.A.; Stensrud, D.; Wicker, L. Simultaneous radar and satellite data storm-scale assimilation using an Ensemble Kalman Filter approach for 24 May 2011. Mon. Weather Rev. 2015, 143, 165–194. [Google Scholar] [CrossRef]
- Wang, Y.B.; Liu, Z.; Yang, S.; Min, J.; Chen, L.; Chen, Y.; Zhang, T. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over north China. J. Geophys. Res. Atmos. 2018, 123, 3374–3394. [Google Scholar] [CrossRef]
- Lai, A.; Min, J.; Gao, J.; Ma, H.; Cui, C.; Xiao, Y.; Wang, Z. Assimilation of Radar Data, Pseudo Water Vapor, and Potential Temperature in a 3DVAR Framework for Improving Precipitation Forecast of Severe Weather Events. Atmosphere 2020, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Moradi, I.; Evans, K.F.; Mccarty, W. Assimilation of satellite microwave observations over the rainbands of tropical cyclones. Mon. Weather Rev. 2020, 148, 4729–4745. [Google Scholar] [CrossRef]
- Yang, C.; Liu, Z.; Bresch, J.; Rizvi, S.R.H.; Huang, X.; Min, J. AMSR2 all-sky radiance assimilation and its impact on the analysis and forecast of Hurricane Sandy with a limited-area data assimilation system. Tellus A 2016, 68, 30917. [Google Scholar] [CrossRef] [Green Version]
- Bauer, P.; Moreau, E.; Chevallier, F.; O’keeffe, U. Multiple-scattering microwave radiative transfer for data assimilation applications. Q. J. R. Meteorol. Soc. 2006, 132, 1259–1281. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Campbell, W.F.; Swadley, S.D. Reduction of Middle-Atmospheric Forecast Bias through Improvement in Satellite Radiance Quality Control. Weather Forecast. 2010, 25, 681–700. [Google Scholar] [CrossRef]
- Xu, D.; Auligné, T.; Descombes, G.; Snyder, C. A method for retrieving clouds with satellite infrared radiances using the particle filter. Geosci. Model Dev. 2016, 9, 3919–3932. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, E.; Mahajan, R. All-Sky Microwave Radiance Assimilation in the NCEP’s GSI Analysis System. Mon. Weather Rev. 2016, 144, 4709–4735. [Google Scholar] [CrossRef]
- Pielke, R.A.; Landsea, C.W. Normalized hurricane damages in the United States: 1925-95. Weather Forecast. 1998, 13, 621–631. [Google Scholar] [CrossRef]
- Franklin, J.L. National Hurricane Center Forecast Verification Report. Available online: http://www.nhc.noaa.gov/verification/pdfs/Verification_2004.pdf (accessed on 1 February 2005).
- Shen, F.; Xue, M.; Min, J. A comparison of limited-area 3DVAR and ETKF-En3DVAR data assimilation using radar observations at convective scale for the prediction of Typhoon Saomai (2006). Meteorol. Appl. 2017, 24, 628–641. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.X.; Yu, C.; Tallapragada, V. The impact of assimilation of GPM microwave imager clear-sky radiance on numerical simulations of Hurricanes Joaquin (2015) and Matthew (2016) with the HWRF model. Mon. Weather Rev. 2019, 147, 175–198. [Google Scholar] [CrossRef]
- Li, J.; Liu, H. Improved hurricane track and intensity forecast using single field-of-view advanced IR sounding measurements. Geophys. Res. Lett. 2009, 36, L11813. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Chen, Y.; Huang, X.Y. Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot. Weather Forecast. 2012, 27, 424–437. [Google Scholar] [CrossRef]
- Liu, Z.; Schwartz, C.S.; Snyder, C.; Ha, S.Y. Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Weather Rev. 2012, 140, 4017–4034. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.F. Initial evaluation and assimilation of FY-3A atmospheric sounding data in the ECMWF System. Sci. China Earth Sci. 2011, 54, 1453–1457. [Google Scholar] [CrossRef]
- Lu, Q.; Bell, W.; Bauer, P.; Bormann, N.; Peubey, C. Characterizing the FY-3A microwave temperature sounder using the ECMWF model. J. Atmos. Ocean. Technol. 2011, 28, 1373–1389. [Google Scholar] [CrossRef]
- Chen, K.; English, S.J.; Bormann, N.; Zhu, J. Assessment of FY-3A and FY-3B MWHS observations. Weather Forecast. 2015, 30, 1280–1290. [Google Scholar] [CrossRef]
- Lawrence, H.; Bormann, N.; Lu, Q.F.; Geer, A.J.; English, S.J. An Evaluation of FY-3C MWHS-2 at ECMWF. EUMETSAT/ECMWF Fellowship Programme Research Report No. 37. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2015/10668-evaluation-fy-3c-mwhs-2-ecmwf.pdf (accessed on 1 June 2015).
- Zhang, P.; Chen, L.; Xian, D.; Xu, Z. Recent progress of Fengyun meteorology satellites. Chin. J. Space Sci. 2018, 38, 788–796. [Google Scholar]
- Li, J.; Liu, G. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech. 2016, 9, 3095–3113. [Google Scholar] [CrossRef] [Green Version]
- Xian, Z.; Chen, K.; Zhu, J. All-sky assimilation of the MWHS-2 observations and evaluation the impacts on the analyses and forecasts of binary typhoons. J. Geophys. Res. Atmos. 2019, 124, 6359–6378. [Google Scholar] [CrossRef]
- Barker, D.; Huang, X.Y.; Liu, Z.; Auligné, T.; Zhang, X.; Rugg, S.; Ajjaji, R.; Bourgeois, A.; Bray, J.; Demirtas, M.; et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Am. Meteorol. Soc. 2012, 93, 831–843. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zeng, M.J.; Wang, Y.; Wang, W.L.; Wu, H.Y.; Mei, H.X. Evaluation of Two Momentum Control Variable Schemes and Their Impact on the Variational Assimilation of Radar Wind Data: Case Study of a Squall Line. Adv. Atmos. Sci. 2016, 33, 1143–1157. [Google Scholar] [CrossRef]
- Xu, D.; Huang, X.; Liu, Z.; Min, J. Impact of Assimilating Radiances with the WRFDA ETKF/3DVAR Hybrid System on the Prediction of Two Typhoons in 2012. J. Meteorol. Res. 2015, 29, 28–40. [Google Scholar] [CrossRef]
- Sun, J.Z.; Wang, H.L.; Tong, W.X.; Zhang, Y.; Lin, C.Y.; Xu, D. Comparison of the Impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Weather Rev. 2016, 14, 149–169. [Google Scholar] [CrossRef]
- Zhu, Y.; Derber, J.; Collard, A.; Dee, D.; Treadon, R. Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Q. J. R. Meteorol. Soc. 2013, 140, 1479–1492. [Google Scholar] [CrossRef]
- Harris, B.A.; Kelly, G. A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Auligne’, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.D.; Suarez, M.J. An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Tech. Memo. 1994, 3, 104606. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 13, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
Channel | Central Frequency (GHz) | Polarizations | Bandwidth (MHz) | Frequency Stability (MHz) | Antenna Main Beam Width | Antenna Main Beam Efficiency | Resolution (km) | NEDT (K) |
---|---|---|---|---|---|---|---|---|
1 | 89 | V | 1500 | 50 | 2.0° | >92% | 29 | 1.0 |
2 | 118.75 ± 0.08 | H | 20 | 30 | 2.0° | >92% | 29 | 1.0 |
3 | 118.75 ± 0.2 | H | 100 | 30 | 2.0° | >92% | 29 | 1.0 |
4 | 118.75 ± 0.3 | H | 165 | 30 | 2.0° | >92% | 29 | 1.6 |
5 | 118.75 ± 0.8 | H | 200 | 30 | 2.0° | >92% | 29 | 1.6 |
6 | 118.75 ± 1.1 | H | 200 | 30 | 2.0° | >92% | 29 | 1.6 |
7 | 118.75 ± 2.5 | H | 200 | 30 | 2.0° | >92% | 29 | 1.6 |
8 | 118.75 ± 3.0 | H | 1000 | 30 | 2.0° | >92% | 29 | 2.0 |
9 | 118.75 ± 5.0 | H | 2000 | 30 | 2.0° | >92% | 29 | 2.6 |
10 | 150 | V | 1500 | 50 | 1.1° | >95% | 29 | 1.0 |
11 | 183.31 ± 1 | H | 500 | 30 | 1.1° | >95% | 16 | 1.0 |
12 | 183.31 ± 1.8 | H | 700 | 30 | 1.1° | >95% | 16 | 1.0 |
13 | 183.31 ± 3 | H | 1000 | 30 | 1.1° | >95% | 16 | 1.0 |
14 | 183.31 ± 4.5 | H | 2000 | 30 | 1.1° | >95% | 16 | 1.0 |
15 | 183.31 ± 7 | H | 2000 | 30 | 1.1° | >95% | 16 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Shu, A.; Li, H.; Shen, F.; Li, Q.; Su, H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sens. 2021, 13, 2873. https://doi.org/10.3390/rs13152873
Xu D, Shu A, Li H, Shen F, Li Q, Su H. Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil. Remote Sensing. 2021; 13(15):2873. https://doi.org/10.3390/rs13152873
Chicago/Turabian StyleXu, Dongmei, Aiqing Shu, Hong Li, Feifei Shen, Qiang Li, and Hang Su. 2021. "Effects of Assimilating Clear-Sky FY-3D MWHS2 Radiance on the Numerical Simulation of Tropical Storm Ampil" Remote Sensing 13, no. 15: 2873. https://doi.org/10.3390/rs13152873