Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged Stokes-Related Parameters
"> Figure 1
<p>The location of study site and the oilseed rape parcels distribution in it.</p> "> Figure 2
<p>Oilseed rape phenological stages, their corresponding BBCH-codes, DAS, plant images taken from Weber and Bleiholder (1990) and field photos taken during field campaign.</p> "> Figure 3
<p>Flowchart of oilseed rape phenology retrieval from RADARSAT-2 multi-temporal data and DT algorithm.</p> "> Figure 4
<p>Evolution of the Group1 Stokes parameters versus oilseed rape phenology.</p> "> Figure 5
<p>Evolution of the Group2 Stokes parameters versus oilseed rape phenology.</p> "> Figure 6
<p>The evolution of <math display="inline"><semantics> <mi>m</mi> </semantics></math>, <math display="inline"><semantics> <mi>H</mi> </semantics></math>, <math display="inline"><semantics> <mi>χ</mi> </semantics></math> and <math display="inline"><semantics> <mi>φ</mi> </semantics></math> in Group 1 versus rapeseed phenology.</p> "> Figure 7
<p>The evolution of <math display="inline"><semantics> <mi>m</mi> </semantics></math>, <math display="inline"><semantics> <mi>H</mi> </semantics></math>, <math display="inline"><semantics> <mi>χ</mi> </semantics></math> and <math display="inline"><semantics> <mi>φ</mi> </semantics></math> in Group 2 versus rapeseed phenology.</p> "> Figure 7 Cont.
<p>The evolution of <math display="inline"><semantics> <mi>m</mi> </semantics></math>, <math display="inline"><semantics> <mi>H</mi> </semantics></math>, <math display="inline"><semantics> <mi>χ</mi> </semantics></math> and <math display="inline"><semantics> <mi>φ</mi> </semantics></math> in Group 2 versus rapeseed phenology.</p> "> Figure 8
<p>The Group 1 <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>o</mi> <mi>l</mi> <mi>p</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>o</mi> <mi>c</mi> <mi>p</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>p</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>p</mi> <mi>r</mi> </mrow> </semantics></math> on the evolution of rapeseed phenology.</p> "> Figure 9
<p>The Group 2 <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>o</mi> <mi>l</mi> <mi>p</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mi>o</mi> <mi>c</mi> <mi>p</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>p</mi> <mi>r</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>p</mi> <mi>r</mi> </mrow> </semantics></math> on the evolution of rapeseed phenology.</p> ">
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area and Ground Campaign
2.2. SAR Data Set
2.3. Definition of Phenological Stages
2.4. Analysis of Phenological Stages
2.5. Extraction of Averaged Stokes-Related Parameters
2.5.1. Rationale
2.5.2. Stokes-Related Parameter Calculation from the Four-Member Stokes Parameters
2.6. Decision Tree (Dt) Algorithm Training and Validation
2.7. Oilseed Rape Phenological Stages Estimation Scheme
3. Results and Discussion
3.1. Stokes and Child Parameter Response to Rape Phenology
3.1.1. Sub Parameters from Poincare-Sphere or Decomposition Methods
3.1.2. Sub Parameters Related to Linear of Circularity Ratio and Degree
3.2. Oilseed Rape Phenology Classification Using DT Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Magagi, R.; Goïta, K.; Trudel, M.; McNairn, H.; Powers, J. Crop Phenology Retrieval via Polarimetric SAR Decomposition and Random Forest Algorithm. Remote Sens. Environ. 2019, 231, 111234. [Google Scholar] [CrossRef]
- Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.M.; Walters, D. Tracking Crop Phenological Development Using Multi-Temporal Polarimetric Radarsat-2 Data. Remote Sens. Environ. 2018, 210, 508–518. [Google Scholar] [CrossRef]
- McNairn, H.; Jiao, X.; Pacheco, A.; Sinha, A.; Tan, W.; Li, Y. Estimating Canola Phenology Using Synthetic Aperture Radar. Remote Sens. Environ. 2018, 219, 196–205. [Google Scholar] [CrossRef]
- Wiseman, G.; McNairn, H.; Homayouni, S.; Shang, J. RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4461–4471. [Google Scholar] [CrossRef]
- Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Crop Phenology Estimation Using a Multitemporal Model and a Kalman Filtering Strategy. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1081–1085. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, C.; Taskin, G.; Erten, E. Paddy-Rice Phenology Classification Based on Machine-Learning Methods Using Multitemporal Co-Polar X-Band SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2509–2519. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, Y.; Li, K.; Liu, Q.; Liu, L.; Brisco, B. An Improved Scheme for Rice Phenology Estimation Based on Time-Series Multispectral HJ-1A/B and Polarimetric RADARSAT-2 Data. Remote Sens. Environ. 2017, 195, 184–201. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Erten, E.; Hajnsek, I. Rice Growth Monitoring by Means of X-Band Co-Polar SAR: Feature Clustering and BBCH Scale. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1218–1222. [Google Scholar] [CrossRef]
- Mascolo, L.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Nunziata, F.; Migliaccio, M.; Mazzarella, G. A Complete Procedure for Crop Phenology Estimation With PolSAR Data Based on the Complex Wishart Classifier. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6505–6515. [Google Scholar] [CrossRef] [Green Version]
- Singha, M.; Dong, J.; Zhang, G.; Xiao, X. High Resolution Paddy Rice Maps in Cloud-Prone Bangladesh and Northeast India Using Sentinel-1 Data. Sci. Data 2019, 6, 26. [Google Scholar] [CrossRef]
- Fikriyah, V.N.; Darvishzadeh, R.; Laborte, A.; Khan, N.I.; Nelson, A. Discriminating Transplanted and Direct Seeded Rice Using Sentinel-1 Intensity Data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual Polarimetric Radar Vegetation Index for Crop Growth Monitoring Using Sentinel-1 SAR Data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Shang, F.; Hirose, A. Averaged Stokes Vector Based Polarimetric SAR Data Interpretation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4536–4547. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Chen, E.; Zhang, Y.; Yang, H.; Zhao, L.; Ji, Y. Compact Polarimetric Response of Rape (Brassica Napus L.) at C-Band: Analysis and Growth Parameters Inversion. Remote Sens. 2017, 9, 591. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, Z.; Chen, E.; Zhao, C.; Yang, G.; Casa, R.; Pignatti, S.; Feng, Q. Temporal Polarimetric Behavior of Oilseed Rape (Brassica Napus L.) at C-Band for Early Season Sowing Date Monitoring. Remote Sens. 2014, 6, 10375–10394. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Y.; Li, K.; Long, L.; Shao, Y.; Brisco, B.; Li, W. Rice growth monitoring using simulated compact polarimetric C band SAR. Radio Sci. 2015, 49, 1300–1315. [Google Scholar]
- Weber, E.; Bleiholder, H. Erläuterungen Zu Den BBCH-Dezimal-Codes Für Die Entwicklungsstadien von Mais, Raps, Faba-Bohne, Sonnenblume Und Erbse-Mit Abbildungen. Gesunde Pflanz. 1990, 42, 308–321. [Google Scholar]
- Stokes, G.G. Mathematical and Physical Papers; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-511-70226-6. [Google Scholar]
- Born, M. Emil Wolf Principles of Optics; Cambridge University Press: Cambridge, UK, 1999; ISBN 978-0-521-64222-4. [Google Scholar]
- Raney, R.K. Hybrid Dual-Polarization Synthetic Aperture Radar. Remote Sens. 2019, 11, 1521. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R. Polarisation: Applications in Remote Sensing; Oxford Univ. Press: New York, NY, USA, 2010. [Google Scholar]
- Raney, R.K. Hybrid-Polarity SAR Architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J. The Mchi Decomposition of Hybrid Dualpolarimetric Radar Data with Application to Lunar Craters. J. Geophys. Res. Planets 2012, 117, E12. [Google Scholar] [CrossRef]
- Yang, H.; Yang, G.; Gaulton, R.; Zhao, C.; Li, Z.; Taylor, J.; Wicks, D.; Minchella, A.; Chen, E.; Yang, X. In-Season Biomass Estimation of Oilseed Rape (Brassica Napus L.) Using Fully Polarimetric SAR Imagery. Precis. Agric. 2019, 20, 630–648. [Google Scholar] [CrossRef] [Green Version]
Parameter | Equation | Physical Interpretation |
---|---|---|
evaluates the degree of polarized wave within the reflect wave in the object scattering scene. When there is no un-polarized component and the reflect wave is then completely polarized. When the polarized component is absent and the reflect wave is then completely un-polarized. In all other cases with , we say that the reflect wave is partially polarized. | ||
is an alternative way to characterize the randomness in the scattering scene. means completely polarized component, and it will increase monotonically toward unity as the depolarized component increases. In contrast, means the signal is noise-like, which we call completely depolarized wave. | ||
is closely related to the ellipticity of the scattered wave. Encompassing we can reconstruct scattering components from dielectric dihedral reflections and rough surface because the sign of is an unambiguous indicator to even and odd bounce scatterers. Moreover, the sign of also indicates rotation sense even when the radiated electromagnetic wave is not perfectly circularly polarized. | ||
describes the orientation of the strongest linear polarization present in the backscattered field. It is also an alternative way to characterize the scattering direction of the target. It is calculated by and . | ||
which is known as from the Poincare sphere, evaluates the degree of linear polarization components in the polarized scattering electromagnetic wave. It is obtained by division of linear polarized power and the total scattering power. | ||
, which is known as from Poincare sphere, evaluates the degree of circular components in the scattering electromagnetic wave. It is calculated as the ratio between and . It is often used in or decomposition method to distinguish single-bounce and double-bounce scattering components. is defined as scattering angle of target and equal to . | ||
considers the normalized difference between the total polarized intensity of the radar’s backscatter field and the intensity after subtracting vertical components from horizontal components. | ||
considers the normalized difference between the total polarized intensity of the radar’s backscatter field and the intensity of circular polarized wave. |
Class | Samples | Pred | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||
Real | S1 | Numbers | 46 | 44 | 2 | 0 | 0 | 0 |
Accuracy (%) | 95.65% | 4.35% | ||||||
S2 | Numbers | 76 | 4 | 55 | 11 | 4 | 2 | |
Accuracy (%) | 5.26% | 72.37% | 14.47% | 5.26% | 2.63% | |||
S3 | Numbers | 74 | 0 | 6 | 43 | 4 | 21 | |
Accuracy (%) | 8.11% | 58.11% | 5.41% | 28.38% | ||||
S4 | Numbers | 64 | 0 | 0 | 1 | 57 | 6 | |
Accuracy (%) | 1.56% | 89.06% | 9.38% | |||||
S5 | Numbers | 80 | 0 | 3 | 34 | 0 | 43 | |
Accuracy (%) | 3.75% | 42.50% | 53.75% |
Class | Samples | Pred | ||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||
Real | S1 | Numbers | 52 | 49 | 3 | 0 | 0 | 0 |
Accuracy(%) | 94.23% | 5.77% | ||||||
S2 | Numbers | 73 | 1 | 68 | 4 | 0 | 0 | |
Accuracy(%) | 1.37% | 93.15% | 5.48% | |||||
S3 | Numbers | 69 | 0 | 8 | 40 | 2 | 19 | |
Accuracy(%) | 11.59% | 57.97% | 2.90% | 27.54% | ||||
S4 | Numbers | 70 | 0 | 0 | 2 | 63 | 5 | |
Accuracy(%) | 2.86% | 90.00% | 7.14% | |||||
S5 | Numbers | 76 | 0 | 0 | 23 | 2 | 51 | |
Accuracy(%) | 30.26% | 2.63% | 67.11% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Y.; Yang, Y.; Chen, E. Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged Stokes-Related Parameters. Remote Sens. 2021, 13, 2652. https://doi.org/10.3390/rs13142652
Zhang W, Zhang Y, Yang Y, Chen E. Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged Stokes-Related Parameters. Remote Sensing. 2021; 13(14):2652. https://doi.org/10.3390/rs13142652
Chicago/Turabian StyleZhang, Wangfei, Yongxin Zhang, Yue Yang, and Erxue Chen. 2021. "Oilseed Rape (Brassica napus L.) Phenology Estimation by Averaged Stokes-Related Parameters" Remote Sensing 13, no. 14: 2652. https://doi.org/10.3390/rs13142652