Dual-Wavelength Polarimetric Lidar Observations of the Volcanic Ash Cloud Produced during the 2016 Etna Eruption
<p>The Etna explosive activity on the morning of the 18 May 2016 at the VOR crater (identified in each panel with a purple hatch ellipse) at 11:46 UTC from the EMOV (panel <b>a</b>), and EMOT (panel <b>b</b>) cameras. The main location of four summit craters, Bocca Nuova (BN), Voragine (VOR), Nord Est Crater (NEC) and South East Crater (SEC), is also indicated.</p> "> Figure 2
<p>(<b>a</b>) The ash cloud dispersed by the south-east wind from Mt. Etna in the morning of 18 May 2016 observed from the MODIS satellite sensor; (<b>b</b>) location of Lidar instrument at the INAF (Catania) on Google Maps; (<b>c</b>) Lidar scanning measurement geometry at 20°, 30°,40° and 90° of elevation angle with respect to the ground; (<b>d</b>) photo of the AMPLE Lidar working at INAF (Catania).</p> "> Figure 3
<p>Range-time diagram of the AMPLE Lidar range-corrected Lidar backscattered signal (RCS) (panel <b>a</b>) and cross-polarization ratio (panel <b>b</b>) at W1 of ash layers dispersed between 2 and 4 km (identified by A) in each picture, and between 6 km and 7 km (identified by B). Measurements were carried out in Catania on 18 May 2016 between 13:45 and 16:35 UTC at different elevation angles (90°, 20°, 30°, 40°). The colour scale on the right side is in arbitrary units ranging between 0 and 100. See text for details.</p> "> Figure 4
<p>AMPLE Lidar profiles at 15:02 UTC on 18 May 2016 in terms of backscattering and cross-polarization ratio at W1 and W0 up to 8 km panels (<b>a</b>,<b>b</b>). The blue and green dashed squares identify the profile portions of ash layers. Lidar profiles at an altitude between 7 and 6 km, panels (<b>c</b>,<b>d</b>), and between 4 and 2 km using a zenith pointing, panels (<b>e</b>,<b>f</b>). Both cross-polarization ratios at W1 and W0 around the same altitude of 3.5 km show two maximum values associable with two ash layers. The purple hatched ellipses identify the peaks where the ash layers are present in the panels (<b>e</b>,<b>f</b>).</p> "> Figure 5
<p>Overlapping between Lidar simulated and measured data of depolarization (percentage) and backscattering (dBβ) coefficients: FA-SC in yellow dots, FA-VC in blue dots, VA-SC green dots and VA-VC in red dots and Lidar measurements in dark dots at W0 and W1, panels (<b>a</b>,<b>b</b>), respectively.</p> "> Figure 6
<p>Vertical profile of mean diameter <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> (panels (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>)) and ash mass concentration <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> (panels (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>)) retrievals observed at 15:02 UTC on 18 May 2016. The panels on the right show <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> retrievals performed at W1, panels (<b>b</b>,<b>d</b>); at W0, panels (<b>f</b>,<b>h</b>) and combining both wavelengths (W2), panels (<b>j</b>,<b>l</b>), respectively, and related to layers between 2 and 4 km (panels (<b>d</b>,<b>h</b>,<b>l</b>)) and between 6 and 7 km, (panels (<b>b</b>,<b>f</b>)); ML uses both observables (O2, backscattering coefficient and cross-polarization ratio) and the coloured area bounded by the blue dashed line is obtained considering the discrepancy ±σ around the estimated value (line blue); SR uses only the backscattering coefficient (O1) and both Lidar observables (O2); MR uses only the backscattering coefficient (O1); PM1, PM2, PML1 and PML2 use only the backscattering coefficient. The six panels on the left show the <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals performed at W1, panel (<b>a</b>,<b>c</b>), W0, panel (<b>e</b>,<b>g</b>) and combining both wavelengths W2, panel (<b>i</b>,<b>k</b>), respectively, and related to layers between 2 and 4 km, panels (<b>c</b>,<b>g</b>,<b>k</b>)) and between 6 and 7 km, panels (<b>a</b>,<b>e</b>,<b>i</b>). The employed retrieval methodologies are: ML using both observables (O2); SR-O1 and O2; MR-O1.</p> "> Figure 6 Cont.
<p>Vertical profile of mean diameter <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> (panels (<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>,<b>i</b>,<b>k</b>)) and ash mass concentration <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> (panels (<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>,<b>j</b>,<b>l</b>)) retrievals observed at 15:02 UTC on 18 May 2016. The panels on the right show <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> retrievals performed at W1, panels (<b>b</b>,<b>d</b>); at W0, panels (<b>f</b>,<b>h</b>) and combining both wavelengths (W2), panels (<b>j</b>,<b>l</b>), respectively, and related to layers between 2 and 4 km (panels (<b>d</b>,<b>h</b>,<b>l</b>)) and between 6 and 7 km, (panels (<b>b</b>,<b>f</b>)); ML uses both observables (O2, backscattering coefficient and cross-polarization ratio) and the coloured area bounded by the blue dashed line is obtained considering the discrepancy ±σ around the estimated value (line blue); SR uses only the backscattering coefficient (O1) and both Lidar observables (O2); MR uses only the backscattering coefficient (O1); PM1, PM2, PML1 and PML2 use only the backscattering coefficient. The six panels on the left show the <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals performed at W1, panel (<b>a</b>,<b>c</b>), W0, panel (<b>e</b>,<b>g</b>) and combining both wavelengths W2, panel (<b>i</b>,<b>k</b>), respectively, and related to layers between 2 and 4 km, panels (<b>c</b>,<b>g</b>,<b>k</b>)) and between 6 and 7 km, panels (<b>a</b>,<b>e</b>,<b>i</b>). The employed retrieval methodologies are: ML using both observables (O2); SR-O1 and O2; MR-O1.</p> "> Figure 7
<p>Vertical profile of concentration <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> retrievals, panels (<b>b</b>,<b>d</b>,<b>f</b>), and mean diameter <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals, panels (<b>a</b>), 9 (<b>c</b>,<b>e</b>), observed at 20° (15:40 UTC), 30° (15:57 UTC) and 40° (16:08 UTC) on 18 May 2016, respectively. ML uses both observables (O2, backscattering coefficient and cross-polarization ratio), and the coloured area bounded by the blue dashed line is obtained considering the discrepancy ±σ around the estimated value (line blue); SR only the backscattering coefficient (O1) and both Lidar observables (O2); MR one the backscattering coefficient (O1); PM1, PM2, PML1 and PML2 take into account only the backscattering coefficient. The lower panels show the overlapping among <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals performed at W1 and employing the following retrieval methodologies: ML using both observables (O2); SR-O1 and O2.</p> "> Figure 7 Cont.
<p>Vertical profile of concentration <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mi>a</mi> </msub> </mrow> </semantics></math> retrievals, panels (<b>b</b>,<b>d</b>,<b>f</b>), and mean diameter <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals, panels (<b>a</b>), 9 (<b>c</b>,<b>e</b>), observed at 20° (15:40 UTC), 30° (15:57 UTC) and 40° (16:08 UTC) on 18 May 2016, respectively. ML uses both observables (O2, backscattering coefficient and cross-polarization ratio), and the coloured area bounded by the blue dashed line is obtained considering the discrepancy ±σ around the estimated value (line blue); SR only the backscattering coefficient (O1) and both Lidar observables (O2); MR one the backscattering coefficient (O1); PM1, PM2, PML1 and PML2 take into account only the backscattering coefficient. The lower panels show the overlapping among <math display="inline"><semantics> <mrow> <msub> <mi>D</mi> <mi>n</mi> </msub> </mrow> </semantics></math> retrievals performed at W1 and employing the following retrieval methodologies: ML using both observables (O2); SR-O1 and O2.</p> ">
Abstract
:1. Introduction
2. Etna Case Study and Polarimetric Lidar Observations
2.1. Etna Case Study
2.2. Dual Wavelength Polarimetric Lidar
2.3. Polarimetric Lidar Observations during the May 2016 Etna Eruption
3. Retrieval Methods from Lidar Data
3.1. Maximum Likelihood (ML) Method
3.2. Single and Multiple Regression (SR and MR) Methods
3.3. Parametric Inversion Methods at Visible Wavelength
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boselli, A.; Scollo, S.; Leto, G.; Zanmar Sanchez, R.; Sannino, A.; Wang, X.; Coltelli, M.; Spinelli, N. First Volcanic Plume Measurements by an Elastic/Raman Lidar Close to the Etna Summit Craters. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef]
- Bonadonna, C.; Biasse, S.; Menoni, S.; Gregg, C. Forecasting and Planning for Volcanic Hazards, Risks, and Disasters. In Assessment of Risk Associated with Tephra-Related Hazards; Hazards and Disasters; Papale, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 329–378. [Google Scholar] [CrossRef]
- Jenkins, S.F.; Wilson, T.; Magill, C.; Miller, V.; Stewart, C.; Blong, R.; Marzocchi, W.; Boulton, M.; Bonadonna, C.; Costa, A. Volcanic ash fall hazard and risk. In Global Volcanic Hazard and Risk; Loughlin, S.C., Sparks, S., Brown, S.K., Jenkins, S.F., Vye-Brown, C., Eds.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-11175-2. [Google Scholar]
- Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linne, H.; Ansmann, A.; Bosenberg, J.; D’Amico, G.; Mattis, I.; et al. EARLINET: Towards an advanced sustainable European aerosol lidar network. Atmos. Meas. Tech. 2014, 7, 2389–2409. [Google Scholar] [CrossRef] [Green Version]
- Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R.E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N.I.; Stohl, A.; Mona, L. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements. Atmos. Chem. Phys. Discuss. 2013, 13, 9303–9320. [Google Scholar] [CrossRef] [Green Version]
- Mereu, L.; Scollo, S.; Mori, S.; Boselli, A.; Leto, G.; Marzano, F.S. Maximum-Likelihood Retrieval of Volcanic Ash Concentration and Particle Size from Ground-Based Scanning Lidar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5824–5842. [Google Scholar] [CrossRef]
- Pisani, G.; Boselli, A.; Coltelli, M.; Leto, G.; Pica, G.; Scollo, S.; Spinelli, N.; Wang, X. Lidar depolarization measurement of fresh volcanic, ash from Mt. Etna, Italy. Atmos. Environ. 2012, 62, 34–40. [Google Scholar] [CrossRef]
- Winker, D.M. Accounting for multiple scattering in retrievals from space Lidar. Proc. SPIE 2003, 5059, 128–140. [Google Scholar]
- Gasteiger, J.; Gros, S.; Freudenthaler, V.; Wiegner, M. Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground-based remote sensing measurements. Atmos. Chem. Phys. Discuss. 2011, 11, 2209–2223. [Google Scholar] [CrossRef] [Green Version]
- Gobbi, G.P.; Congeduti, F.; Adriani, A. Early stratospheric effects of the Pinatubo Eruption. Geophys. Res. Lett. 1992, 19, 997–1000. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Prestifilippo, M.; Spinelli, N.; Wang, X. Volcanic ash concentration during the 12 August 2011 Etna eruption. Geophys. Res. Lett. 2015, 42, 2634–2641. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Coltelli, M.; Leto, G.; Pisani, G.; Spinelli, N.; Wang, X. Monitoring Etna volcanic plumes using a scanning LiDAR. Bull. Volcanol. 2012, 74, 2383–2395. [Google Scholar] [CrossRef]
- Scollo, S.; Boselli, A.; Corradini, S.; Leto, G.; Guerrieri, L.; Merucci, L.; Prestifilippo, M.; Sanchez, R.; Sannino, A.; Stelitano, D. Multi-Sensor Analysis of a Weak and Long-Lasting Volcanic Plume Emission. Remote Sens. 2020, 12, 3866. [Google Scholar] [CrossRef]
- Madonna, F.; Amodeo, A.; Damico, G.; Pappalardo, G. A study on the use of radar and lidar for characterizing ultragiant aerosol. J. Geophys. Res. Atmos. 2013, 118, 10–056. [Google Scholar] [CrossRef]
- Edwards, M.J.; Pioli, L.; Andronico, D.; Scollo, S.; Ferrari, F.; Cristaldi, A. Shallow factors controlling the explosivity of basaltic magmas: The 17–25 May 2016 eruption of Etna Volcano (Italy). J. Volcanol. Geotherm. Res. 2018, 357, 425–436. [Google Scholar] [CrossRef]
- Belegante, L.; Bravo-Aranda, J.A.; Freudenthaler, V.; Nicolae, D.; Nemuc, A.; Ene, D.; Alados-Arboledas, L.; Amodeo, A.; Pappalardo, G.; D’Amico, G.; et al. Experimental techniques for the calibration of lidar depolarization channels in EARLINET. Atmos. Meas. Tech. 2018, 11, 1119–1141. [Google Scholar] [CrossRef] [Green Version]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Biele, J.; Beyerle, G.; Baumgarten, G. Polarization Lidar: Correction of instrumental effects. Opt. Express 2000, 7, 427. [Google Scholar] [CrossRef]
- Freudenthaler, V.; Esselborn, M.; Wiegner, M.; Heese, B.; Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Wirth, M.; Fix, A.; et al. Cross-polarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus 2009, 61, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Marzano, F.; Barbieri, S.; Vulpiani, G.; Rose, W. Volcanic Ash Cloud Retrieval by Ground-Based Microwave Weather Radar. IEEE Trans. Geosci. Remote Sens. 2006, 44, 11. [Google Scholar] [CrossRef]
- Mereu, L.; Marzano, F.S.; Montopoli, M.; Bonadonna, C. Retrieval of Tephra Size Spectra and Mass Flow Rate from C-Band Radar during the 2010 Eyjafjallajökull Eruption, Iceland. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5644–5660. [Google Scholar] [CrossRef]
- Marzano, F.S.; Picciotti, E.; Vulpiani, G.; Montopoli, M. Synthetic Signatures of Volcanic Ash Cloud Particles from X-Band Dual-Polarization Radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 193–211. [Google Scholar] [CrossRef]
- Schumann, U.; Weinzierl, B.; Reitebuch, O.; Schlager, H.; Minikin, A.; Forster, C.; Baumann, R.; Sailer, T.; Graf, K.; Mannstein, H.; et al. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010. Atmos. Chem. Phys. 2011, 11, 2245–2279. [Google Scholar] [CrossRef] [Green Version]
- Armienti, P.; Macedonio, G.; Pareschi, M.T. A numerical model for simulation of tephra transport and deposition: Applications to May 18, 1980, Mount St. Helens eruption. J. Geophys. Res. 1988, 93, 6463–6476. [Google Scholar] [CrossRef]
- Scollo, S.; Coltelli, M.; Folegani, M.; Natali, S.; Prodi, F. Terminal settling velocity measurements of volcanic ash during the 2002–2003 Etna eruption by an X-band microwave rain gauge disdrometer. Geophys. Res. Lett. 2005, 32, L10302-1–L10302-5. [Google Scholar] [CrossRef]
- Groß, S.; Freudenthaler, V.; Wiegner, M.; Gasteiger, J.; Geiß, A.; Schnell, F. Dual-wavelength linear depolarization ratio of volcanic aerosols: Lidar measurements of the Eyjafjallajökull plume over Maisach, Germany. Atmos. Environ. 2012, 48, 85–96. [Google Scholar] [CrossRef] [Green Version]
Ash Particle Ensemble Property | Very Fine Ash (VA) | Fine Ash (FA) | Coarse Ash (CA) |
---|---|---|---|
Ash diameter variability range DDn (mm) | Uniform PDF DDn 0.125–8 | Uniform PDF DDn 8–64 | Uniform PDF DDn 64–512 |
Ash particle concentration variability range (mg/m3) VC: Very small Conc. SC: Small Conc. MC: Medium Conc. IC: Intense Conc. | Uniform PDF VC: 10−3–100 (*) SC: 100–102 (*) MC: 102–103 IC: 103–104 | Uniform PDF VC: 10−3–100 (*) SC: 100–102 (*) MC: 102–103 IC: 103–104 | Uniform PDF VC: 10−3–100 SC: 100–102 MC: 102–103 IC: 103–104 |
Ash size distribution shape parameter mp (dimensionless) | Scaled Gamma PSD U-PDF mp = 1–2 | Scaled Gamma PSD U-PDF mp = 1–2 | Scaled Gamma PSD U-PDF mp = 1–2 |
Ash particle density rp (g/cm3) | Uniform PDF rp = 0.5–2.5 | Uniform PDF rp = 0.5–2.5 | Uniform PDF rp = 0.5–2.5 |
Ash particle canting angle mean and deviation mf (°) and sf (°) TO.1: Tumbling Orientation TO.2: Tumbling Orientation TO.3: Tumbling Orientation OO: Oblate Orientation PO: Prolate Orientation | Gaussian-PDF mf = 30°; sf = 30° mf = 45°; sf = 30° (*) mf = 60°; sf = 30° mf = 0°; sf = 10° (*) mf = 90°; sf = 10° (*) | Gaussian-PDF mf = 30°; sf = 30° mf = 45°; sf = 30° (*) mf = 60°; sf = 30° mf = 0°; sf = 10° (*) mf = 90°; sf = 10° (*) | Gaussian-PDF mf = 30°; sf = 30° mf = 45°; sf = 30° mf = 60°; sf = 30° mf = 0°; sf = 10° mf = 90°; sf = 10° |
Non-spherical particle axial ratio rax: axis ratio (dimensionless) RB: basaltic ratio RR: rhyolitic ratio SR: spherical ratio | rax = AR RB: rax-b (*) RR: rax-r SR: rax-s (*) | rax = AR RB: rax-b (*) RR: rax-r SR: rax-s (*) | rax = AR RB: rax-b RR: rax-r SR: rax-s |
Method | Observable (O) | Wavelength (W) | |||
---|---|---|---|---|---|
βhh | βhh&δcr | UV | VIS | UV&VIS | |
SR | O1 | O2 | W0 | W1 | |
MR | O1 | W2 | |||
VALR ML | O1 | O2 | W0 | W1 | W2 |
Altitude (km)/Elevation (°)/ | Discrepancy (%) | SR O1 W0 | SR O2 W0 | SR O1 W1 | SR 02 W1 | MR O1 W2 | P1 O1 W1 | P2 O1 W1 | PML1 O1 W1 | PML2 O1 W1 | |
---|---|---|---|---|---|---|---|---|---|---|---|
2–4 km | 90° | 4.68 | 2.74 | 1.74 | 3.14 | 8.86 | 100 | 11.32 | 31.40 | 32.89 | |
25.90 | 17.30 | 8.13 | 14.20 | 40.74 | 100 | 58.62 | 100 | 76.51 | |||
0.38 | 0.06 | 0.07 | 0.38 | 0.01 | |||||||
1.18 | 0.89 | 1.10 | 1.46 | 1.24 | |||||||
6–7 km | 90° | 1.15 | 3.21 | 2.70 | 2.63 | 2.41 | 100 | 0.46 | 5.34 | 7.73 | |
2.17 | 20.99 | 20.21 | 18.40 | 15.14 | 100 | 12.68 | 38.29 | 37.51 | |||
0.78 | 0.86 | 1.45 | 2.65 | 0.96 | |||||||
1.27 | 1.48 | 1.11 | 1.69 | 1.36 | |||||||
2–4 km | 40° | 3.18 | 5.12 | 100 | 4.94 | 18.00 | 22.55 | ||||
16.78 | 21.76 | 100 | 36.90 | 86.38 | 59.82 | ||||||
0.02 | 0.18 | ||||||||||
0.88 | 1.19 | ||||||||||
2–4 km | 30° | 25.89 | 5.66 | 100 | 0.72 | 26.93 | 9.91 | ||||
54.00 | 5.52 | 100 | 2.09 | 77.83 | 14.86 | ||||||
1.10 | 3.90 | ||||||||||
1.15 | 12.30 | ||||||||||
2–4 km | 20° | 7.40 | 9.02 | 100 | 7.38 | 26.14 | 43.08 | ||||
30.01 | 31.25 | 100 | 33.34 | 80.89 | 100 | ||||||
0.62 | 2.43 | ||||||||||
1.18 | 10.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mereu, L.; Scollo, S.; Boselli, A.; Leto, G.; Zanmar Sanchez, R.; Bonadonna, C.; Marzano, F.S. Dual-Wavelength Polarimetric Lidar Observations of the Volcanic Ash Cloud Produced during the 2016 Etna Eruption. Remote Sens. 2021, 13, 1728. https://doi.org/10.3390/rs13091728
Mereu L, Scollo S, Boselli A, Leto G, Zanmar Sanchez R, Bonadonna C, Marzano FS. Dual-Wavelength Polarimetric Lidar Observations of the Volcanic Ash Cloud Produced during the 2016 Etna Eruption. Remote Sensing. 2021; 13(9):1728. https://doi.org/10.3390/rs13091728
Chicago/Turabian StyleMereu, Luigi, Simona Scollo, Antonella Boselli, Giuseppe Leto, Ricardo Zanmar Sanchez, Costanza Bonadonna, and Frank Silvio Marzano. 2021. "Dual-Wavelength Polarimetric Lidar Observations of the Volcanic Ash Cloud Produced during the 2016 Etna Eruption" Remote Sensing 13, no. 9: 1728. https://doi.org/10.3390/rs13091728