Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China
<p>The Lidars distribution. The black circles represent the deserts around the Lidar network, the green lines represent the Lidar stations, the white dots represent the locations of the cities examined in the dust process besides the six Lidars stations, the red lines represent the provincial boundaries.</p> "> Figure 2
<p>Hourly PM<sub>2.5</sub> and PM<sub>10</sub> concentrations and PM<sub>2.5</sub>/PM<sub>10</sub> from ground observation in cities examined.</p> "> Figure 3
<p>Daily average concentrations of PM<sub>10</sub> at 1470 national control stations in China on 3 May 2020.</p> "> Figure 4
<p>NCEP reanalyzed synoptic situation at 500 hPa (top panel, (<b>a</b>,<b>b</b>)) and surface (bottom panel, (<b>c</b>,<b>d</b>)) at 20:00 on 2 May (left panel, (<b>a</b>,<b>c</b>)) and at 08:00 on 3 May (right panel, (<b>b</b>,<b>d</b>)). The red dashed lines represent the isotherms (°C). The blue solid lines represent the height contours (dagpm) in (<b>a</b>) and (<b>b</b>) and surface pressure (hPa) in (<b>c</b>) and (<b>d</b>).</p> "> Figure 5
<p>The average daily temperature of cities examined from 1 April to 10 May 2020.</p> "> Figure 6
<p>Vertical structure of aerosols from Lidar observation in different cities. Left panel: extinction coefficient of 532 nm, right panel: depolarization ratio of 532 nm. (From top to bottom: Jiayuguan (<b>a</b>,<b>b</b>), Yumen (<b>c</b>,<b>d</b>), Aksay (<b>e</b>,<b>f</b>), Jinchang (<b>g</b>,<b>h</b>), Wuwei (<b>i</b>,<b>j</b>), Baiyin (<b>k</b>,<b>l</b>)).</p> "> Figure 7
<p>Relationship between extinction coefficient of 532 nm at 150 m and PM<sub>2.5</sub>, PM<sub>10</sub> concentration from ground observation in different cities (from top to bottom: Jiayuguan (<b>a</b>,<b>b</b>), Yumen (<b>c</b>,<b>d</b>), Aksay (<b>e</b>,<b>f</b>), Jinchang (<b>g</b>,<b>h</b>), Wuwei (<b>i</b>,<b>j</b>), Baiyin (<b>k</b>,<b>l</b>)).</p> "> Figure 8
<p>Hourly concentration of PM<sub>2.5</sub>, PM<sub>10</sub> at vertical fitted by the formula in <a href="#remotesensing-13-01056-t003" class="html-table">Table 3</a> (from top to bottom: Jiayuguan (<b>a</b>,<b>b</b>), Yumen (<b>c</b>,<b>d</b>), Aksay (<b>e</b>,<b>f</b>), Jinchang (<b>g</b>,<b>h</b>), Wuwei (<b>i</b>,<b>j</b>), Baiyin (<b>k</b>,<b>l</b>)).</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Lidars
2.1.1. Instrumentation
2.1.2. Retrieval Method for the Extinction Coefficient
2.1.3. Retrieval Method for the Depolarization Ratio
2.1.4. The Fitting Method between Particulate Mass Concentration and Extinction Coefficient, Depolarization Ratio
2.1.5. Lidar Network
2.2. Ground Observation Data
3. Results and Discussion
3.1. Analysis of the Concentration of Particles Monitored on the Ground
3.2. Meteorological Conditions Causing the Dust
3.2.1. Dynamic Conditions
3.2.2. Thermal Conditions
3.3. Results from Lidar Network
3.3.1. Extinction Coefficient and Depolarization Ratio
3.3.2. The Fitting of the Extinction Coefficient with the Particulate Concentration
3.3.3. Retrieval of Vertical Distribution of Particulate Concentration
4. Conclusions
- The duration of the dust event was short, but its area of influence was wide and the intensity was very strong. The peak hourly-concentration of PM10 in Jinchang and Wuwei was more than 4000 µg·m−3. During the period of strong dust, the values of PM2.5/PM10 in cities examined were less than 0.2 and the extinction coefficient became greater than 1 km−1 using Lidar observations. In addition, the growth rates of PM2.5 were higher than that of PM10 after long distance transportation of dust.
- The strong concentration of dust mainly concentrated in 1 km, and the height of dust near the sand source was 2 km. When the dust particles were transported about 200–300 km, the height increased by 1–2 km. However, the concentration decreased obviously.
- The depolarization ratios showed that the particles over Tengger Desert were more spherical than those over Badain Jaran Desert.
- The formula of fitting the concentration of particulate with extinction coefficient in Northwest China was found firstly, which realized the research of dust event from qualitative to quantitative. There was a linear relationship between 532 nm extinction coefficient and the concentration of PM2.5 and PM10. The R2 in Yumen, Aksay and Baiyin were inferior slightly, which were 0.706 to 0.879. The R2 in Jiayuguan, Jinchang and Wuwei were greater than 0.9.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achakulwisut, P.; Anenberg, S.C.; Neumann, J.E.; Penn, S.L.; Weiss, N.; Crimmins, A.; Fann, N.; Martinich, J.; Roman, H.; Mickley, L.J. Effects of Increasing Aridity on Ambient Dust and Public Health in the U.S. Southwest Under Climate Change. GeoHealth 2019, 3, 127–144. [Google Scholar] [CrossRef]
- Kok, J.F.; Ward, D.S.; Mahowald, N.M.; Evan, A.T. Global and regional importance of the direct dust-climate feedback. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, Z.; Teymouri, P.; Boloorani, A.D.; Mesdaghinia, A.; Middleton, N.; Griffin, D.W. An overview of bioaerosol load and health impacts associated with dust storms: A focus on the Middle East. Atmos. Environ. 2020, 223, 117187. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Bi, J.; Jin, Q.; Qian, Y.; Leung, L.R.; Feng, T.; Chen, S.; Ma, J. Modeling the contributions of Northern Hemisphere dust sources to dust outflow from East Asia. Atmos. Environ. 2019, 202, 234–243. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Jin, Q.; Ma, Y.; Yang, B. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmos. Chem. Phys. 2020, 20, 1507–1529. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Huang, J.; Hayasaka, T.; Wang, S.; Zhou, T.; Jin, H. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.Y.; Zhao, C.; Huang, J.P.; Leung, L.R.; Qian, Y.; Yu, H.B.; Huang, L.; Kalashnikova, O. Trans-Pacific transport and evolu- tion of aerosols: Evaluation of quasi-global WRF-Chem simula- tion with multiple observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Huang, J.; Zhao, C.; Ma, Y.; Jin, Q.; Qian, Y.; Leung, L.R.; Bi, J.; Ma, J. Trans-Pacific transport and evolution of aerosols: Spatiotemporal characteristics and source contributions. Atmos. Chem. Phys. Discuss. 2019, 19, 12709–12730. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Huang, J.; Fu, Q.; Zhang, W.; Wang, X.; Zhang, R.; Ye, H.; Warren, S.G. Dust and Black Carbon in Seasonal Snow Across Northern China. Bull. Am. Meteorol. Soc. 2011, 92, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Doherty, S.J.; Huang, J. Black carbon and other light-absorbing impurities in snow across Northern China. J. Geophys. Res. Atmos. 2013, 118, 1471–1492. [Google Scholar] [CrossRef]
- Jiménez, L.; Rühland, K.M.; Jeziorski, A.; Smol, J.P.; Pérez-Martínez, C. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain. Glob. Chang. Biol. 2018, 24, e139–e158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Hu, Z.; Qian, Y.; Leung, L.R.; Huang, J.; Huang, M.; Jin, J.; Flanner, M.G.; Zhang, R.; Wang, H.; et al. Simulating black carbon and dust and their radiative forcing in seasonal snow: A case study over North China with field campaign measurements. Atmos. Chem. Phys. Discuss. 2014, 14, 11475–11491. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.A.; Bacmeister, J.T.; Huff, J.J.A.; Wu, X.; Bates, S.C.; Rosenbloom, N.A. Exploring the Impact of Dust on North Atlantic Hurricanes in a High-Resolution Climate Model. Geophys. Res. Lett. 2019, 46, 1105–1112. [Google Scholar] [CrossRef]
- Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ. 2016, 139, 214–221. [Google Scholar] [CrossRef]
- Soleimani, Z.; Boloorani, A.D.; Khalifeh, R.; Griffin, D.W.; Mesdaghinia, A. Short-term effects of ambient air pollution and cardiovascular events in Shiraz, Iran, 2009 to 2015. Environ. Sci. Pollut. Res. 2019, 26, 6359–6367. [Google Scholar] [CrossRef]
- Soleimani, Z.; Boloorani, A.D.; Khalifeh, R.; Teymouri, P.; Mesdaghinia, A.; Griffin, D.W. Air pollution and respiratory hospital admissions in Shiraz, Iran, 2009 to 2015. Atmos. Environ. 2019, 209, 233–239. [Google Scholar] [CrossRef]
- Katiraie-Boroujerdy, P.-S.; Naeini, M.R.; Asanjan, A.A.; Chavoshian, A.; Hsu, K.-L.; Sorooshian, S. Bias Correction of Satellite-Based Precipitation Estimations Using Quantile Mapping Approach in Different Climate Regions of Iran. Remote Sens. 2020, 12, 2102. [Google Scholar] [CrossRef]
- He, L.; Lin, A.; Chen, X.; Zhou, H.; Zhou, Z.; He, P. Assessment of MERRA-2 Surface PM2.5 over the Yangtze River Basin: Ground-based Verification, Spatiotemporal Distribution and Meteorological Dependence. Remote Sens. 2019, 11, 460. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Lee, H.; Jung, H.C.; Hwang, E.; Hossain, F.; Bonnema, M.; Kang, D.-H.; Getirana, A. Monitoring River Basin Development and Variation in Water Resources in Transboundary Imjin River in North and South Korea Using Remote Sensing. Remote Sens. 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, A.; Yamano, H. Satellite Constellation Reveals Crop Growth Patterns and Improves Mapping Accuracy of Cropping Practices for Subtropical Small-Scale Fields in Japan. Remote Sens. 2020, 12, 2419. [Google Scholar] [CrossRef]
- Kalpoma, K.A.; Nagatani, I.; Kawano, K.; Kudoh, J.-I. Development of a new dust index NDLI for Asian dust extraction system based on Aqua MODIS data and monitoring of trans-boundary Asian dust events in Japan. Int. J. Remote Sens. 2018, 40, 1030–1047. [Google Scholar] [CrossRef]
- Butt, M.J.; Mashat, A.S. MODIS satellite data evaluation for sand and dust storm monitoring in Saudi Arabia. Int. J. Remote Sens. 2018, 39, 8627–8645. [Google Scholar] [CrossRef]
- Yu, H.; Tan, Q.; Chin, M.; Remer, L.A.; Kahn, R.A.; Bian, H.; Kim, D.; Zhang, Z.; Yuan, T.; Omar, A.H.; et al. Estimates of African Dust Deposition Along the Trans-Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI. J. Geophys. Res. Atmos. 2019, 124, 7975–7996. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yang, X.; Zhao, T.; He, Q.; Lu, H.; Mamtimin, A.; Huo, W.; Yang, F.; Liu, C. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China. Atmos. Res. 2019, 218, 285–295. [Google Scholar] [CrossRef]
- Wu, Y.; De Graaf, M.; Menenti, M. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions. J. Geophys. Res. Atmos. 2017, 122, 8801–8815. [Google Scholar] [CrossRef] [Green Version]
- Konsta, D.; Binietoglou, I.; Gkikas, A.; Solomos, S.; Marinou, E.; Proestakis, E.; Basart, S.; García-Pando, C.P.; El-Askary, H.; Amiridis, V. Evaluation of the BSC-DREAM8b regional dust model using the 3D LIVAS-CALIPSO product. Atmos. Environ. 2018, 195, 46–62. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- She, L.; Xue, Y.; Yang, X.; Guang, J.; Li, Y.; Che, Y.; Fan, C.; Xie, Y. Dust Detection and Intensity Estimation Using Himawari-8/AHI Observation. Remote Sens. 2018, 10, 490. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Min, J.; Wang, Y.; Shen, F.; Yang, C.; Sun, Z. Assimilating Himawari-8 AHI aerosol observations with a rapid-update data assimilation system. Atmos. Environ. 2019, 215, 116866.1–116866.101. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Wang, Q. Validation of Himawari-8 aerosol optical depth retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Wu, T.; Li, Z.; Chen, J.; Wang, Y.; Wu, H.; Jin, X.; Liang, C.; Li, S.; Wang, W.; Cribb, M. Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China. Remote Sens. 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- Peshev, Z.Y.; Dreischuh, T.N.; Evgenieva, T.T.; Deleva, A.D.; Tonev, D.; Stoyanov, D.V. Lidar observations of long-range transported Saharan dust over Sofia, Bulgaria: A case study of dust mixed with local aerosols. J. Appl. Remote Sens. 2016, 10, 036009. [Google Scholar] [CrossRef]
- Sakai, T.; Orikasa, N.; Nagai, T.; Murakami, M.; Tajiri, T.; Saito, A.; Yamashita, K.; Hashimoto, A. Balloon-borne and Raman lidar observations of Asian dust and cirrus cloud properties over Tsukuba, Japan. J. Geophys. Res. Atmos. 2014, 119, 3295–3308. [Google Scholar] [CrossRef]
- Lv, L.; Liu, W.; Zhang, T.; Chen, Z.; Dong, Y.; Fan, G.; Xiang, Y.; Yao, Y.; Yang, N.; Chu, B.; et al. Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique. Atmos. Environ. 2017, 164, 360–369. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, T.; Zhao, X.S.; Liu, J.; Dong, Y.S.; Fan, G.; Liu, Y. Retrieval of PM2.5 Concentration from Lidar Data. In Light, Energy and the Environment; OSA Technical Digest (Online), Paper EM3A.6; Optical Society of America: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Wang, Y.; Lin, C.; Yang, D.; Li, Y. Retrieval on mass concentration of urban surface suspended particulate matter with LIDAR and satellite remotesensing. Acta Sci. Nat. Univ. Pekin. 2013, 49, 673–682. [Google Scholar]
- Zerull, R.H.; Giese, R.H.; Weiss, K. Scattering functions of nonspherical dielectric and absorbing particles vs Mie theory. Appl. Opt. 1977, 16, 777–778. [Google Scholar] [CrossRef]
- Pinnick, R.G.; Rosen, J.M.; Hofmann, D.J. Measured Light-Scattering Properties of Individual Aerosol Particles Compared to Mie Scattering Theory. Appl. Opt. 1973, 12, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchino, O.; Tabata, I.; Kai, K.; Okada, Y. Polarization Properties of Middle and High Level Clouds Observed by Lidar. J. Meteorol. Soc. Jpn. 1988, 66, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y. Study on the Three-Dimensional Assimilation and Comprehensive Analysis of the Regional Network Data of Lidar. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2018. (In Chinese). [Google Scholar]
- Eguchi, K.; Uno, I.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Sugimoto, N.; Liu, Z. Trans-pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys. Discuss. 2009, 9, 3137–3145. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Huang, J.; Bi, J.; Wang, G.; Wang, W.; Fu, Q.; Li, Z.; Tsay, S.-C.; Shi, J. Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Sasano, Y. Tropospheric aerosol extinction coefficient profiles derived from scanning lidar measurements over Tsukuba, Japan, from 1990 to 1993. Appl. Opt. 1996, 35, 4941–4952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavov, L.; Iliev, M.; Ilieva, R.; Angelova, R.; Ghelev, C.; Grigorov, I.; Kolarov, G.; Gurdev, L.; Grurdeva, V.; Stoyanov, D.; et al. Lidar monitoring of air pollution over urban areas combined with in-situ sampling of particulate matter. Int. Sci. J. Mach. Technol. Mater. 2018, 10, 412–414. [Google Scholar]
- Liu, D. Development of Polarization-Mie Lidar and Lidar Observation of Atmosphere Boundary Layer. Ph.D. Thesis, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China, 2005. [Google Scholar]
- Gobbi, G.P. Polarization lidar returns from aerosols and thin clouds: A framework for the analysis. Appl. Opt. 1998, 37, 5505–5508. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Hou, L.J.; Lü, B.; Liu, Y.T. Study of Accuracy of Lidar Inversion PM2.5 Concentration. Chin. J. Lasers 2013, 40, 0113001. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Ambient Air Quality Standards. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/t20120302_224165.shtml (accessed on 1 January 2016).
- Cheng, H.X.; Ding, Z.Y.; Shuai, K.J. Statistic analysis on relationship between Sandstorm and High level jet stream in China in latest 5 years. J. Desert Res. 2005, 25, 891–896. [Google Scholar]
Performance | Parameter |
---|---|
Laser transmitter | Nd: YAG laser |
wavelength | 532 nm/355 nm |
Maximum pulse energy | 30 mJ@355 nm; 25 mJ@532 nm |
spatial resolution | 7.5 m |
time resolution | 5 min |
Receiving channel | 355 nm ∥; 532 nm ∥; 355 nm ⊥ |
Blind zone | 30 m |
Incomplete-overlap zone | 120 m |
Lidar | Longitude (°E) | Latitude (°N) |
---|---|---|
Aksay | 94.340 | 39.633 |
Yumen | 97.048 | 40.289 |
Jiayuguan | 98.321 | 39.750 |
Jinchang | 102.194 | 38.532 |
Wuwei | 102.649 | 37.914 |
Baiyin | 104.131 | 36.537 |
Lidar | Number (RH < 80%) | The Fitting Formula | R2 | ||
---|---|---|---|---|---|
PM2.5 | PM10 | PM2.5 | PM10 | ||
Jiayuguan | 93 | y = 415.665 x + 18.248 | y = 1070.651x + 50.766 | 0.935 | 0.935 |
Yumen | 67 | y = 357.712 x + 25.618 | y = 2519.977x + 97.370 | 0.786 | 0.728 |
Aksay | 85 | y = 370.178 x + 40.317 | y = 2117.709x + 115.663 | 0.821 | 0.879 |
Jinchang | 97 | y = 409.400 x + 13.669 | y = 2392.236x − 10.305 | 0.914 | 0.952 |
Wuwei | 97 | y = 340.963 x + 32.053 | y = 2229.356x + 121.959 | 0.982 | 0.987 |
Baiyin | 97 | y = 422.350 x + 21.971 | y = 2060.090x + 47.624 | 0.706 | 0.716 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Hu, Z.; Huang, Z.; Wang, L.; Han, W.; Yang, Y.; Tao, H.; Wang, J. Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sens. 2021, 13, 1056. https://doi.org/10.3390/rs13061056
Yang L, Hu Z, Huang Z, Wang L, Han W, Yang Y, Tao H, Wang J. Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sensing. 2021; 13(6):1056. https://doi.org/10.3390/rs13061056
Chicago/Turabian StyleYang, Lili, Zhiyuan Hu, Zhongwei Huang, Lina Wang, Wenyu Han, Yanping Yang, Huijie Tao, and Jing Wang. 2021. "Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China" Remote Sensing 13, no. 6: 1056. https://doi.org/10.3390/rs13061056
APA StyleYang, L., Hu, Z., Huang, Z., Wang, L., Han, W., Yang, Y., Tao, H., & Wang, J. (2021). Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sensing, 13(6), 1056. https://doi.org/10.3390/rs13061056