Atmospheric Correction of Satellite Optical Imagery over the Río de la Plata Highly Turbid Waters Using a SWIR-Based Principal Component Decomposition Technique
"> Figure 1
<p>Global scheme of the methodology developed in this study. In red boxes are the sources/inputs: satellite data (Moderate Resolution Imaging Spectrometer (MODIS)/ Visible Infrared Imaging Radiometer Suite (VIIRS)), simulated data using the successive orders of scattering radiative transfer code (SOS) and field measurements (Analytic Spectral Device (ASD)/”Tri” Optical Sensors (TriOS)). In blue boxes the outputs: the principal component analysis (PCA) eigenvectors and the PCA-shortwave infrared (SWIR)-derived satellite and simulated water reflectance. Gray solid arrows symbolize each of the intermediate steps in each process, and the dashed black arrows show the comparisons that were performed to test the algorithm.</p> "> Figure 2
<p>Water reflectance spectra measured in the Río de la Plata (RdP) with ASD – (<b>a</b>), solid black lines - and spectral response functions (SRFs) of the ocean color sensors MODIS, VIIRS, and Satélite Argentino-Brasileño para Información Ambiental del Mar (SABIA-Mar) (squared SRFs) at the visible (VIS)/near-infrared (NIR) (<b>a</b>) and SWIR (<b>b</b>) bands considered in this study (see <a href="#remotesensing-13-01050-t001" class="html-table">Table 1</a>).</p> "> Figure 3
<p><b>Red-Green-Blue</b> composite in Plate Carrée projection of the Río de la Plata Estuary as seen by MODIS/Aqua (2014-02-16T17:35:00Z). The location of the sites where the field radiometric measurements were performed are marked in magenta, except for the Fishermen Pier, which has a specific coastal match-up protocol and is marked in black (see <a href="#sec2dot3-remotesensing-13-01050" class="html-sec">Section 2.3</a>). A red-dashed rectangle indicates the region used to apply the geostatistical approach to estimate the effect of sensor noise over the performance of the PCA-SWIR AC (see <a href="#sec4dot1dot4-remotesensing-13-01050" class="html-sec">Section 4.1.4</a>).</p> "> Figure 4
<p>PCA eigenvectors, e<sub>j</sub><sup>PCA</sup> (computed using Set 0), at VIIRS VIS/NIR (<b>a</b>–<b>g</b>) bands plus the SWIR bands at 1241 nm (SWIR1), 1602 nm (SWIR2), and 2257 nm (SWIR3), numbered in decreasing order of explained variance.</p> "> Figure 5
<p>Retrieved (ρ<sub>a</sub><sup>PCA</sup>) vs. true (ρ<sub>a</sub><sup>SOS</sup>) aerosol reflectance at 412 nm (<b>a</b>) and 865 nm (<b>b</b>) SABIA-Mar bands.</p> "> Figure 6
<p>Same as <a href="#remotesensing-13-01050-f005" class="html-fig">Figure 5</a> but for VIIRS 489 nm band using PCA-SWIR12 (<b>a</b>), PCA-SWIR13 (<b>b</b>), PCA-SWIR23 (<b>c</b>), PCA-SWIR123 (<b>d</b>) schemes.</p> "> Figure 7
<p>Same as <a href="#remotesensing-13-01050-f006" class="html-fig">Figure 6</a> but for 862 nm VIIRS band, (<b>a</b>), PCA-SWIR13 (<b>b</b>), PCA-SWIR23 (<b>c</b>), PCA-SWIR123 (<b>d</b>) schemes.</p> "> Figure 8
<p>Retrieved (ρ<sub>w</sub><sup>PCA</sup>) vs. field (ρ<sub>w</sub><sup>ASD</sup>) water reflectance at SABIA-Mar (<b>a</b>) 765 nm (NIR1) and (<b>b</b>) 865 nm (NIR2) bands. Mean values are represented as red dots and vertical red bars correspond to the interquartile range (IQR).</p> "> Figure 9
<p>Retrieved (ρ<sub>w</sub><sup>PCA</sup>) vs. field (ρ<sub>w</sub><sup>ASD</sup>) water reflectance at VIIRS 862 nm (NIR2) band using (<b>a</b>) PCA-SWIR12, (<b>b</b>) PCA-SWIR12, (<b>c</b>) PCA-SWIR12, and (<b>d</b>) PCA-SWIR12 schemes. Dots are mean values and bars are the interquartile range (IQR).</p> "> Figure 10
<p>Satellite-derived water reflectance (<math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">ρ</mi> <mi mathvariant="normal">w</mi> <mrow> <mi>sat</mi> </mrow> </msubsup> </mrow> </semantics></math>) vs. field water reflectance (<math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="sans-serif">ρ</mi> <mi mathvariant="normal">w</mi> <mrow> <mi>field</mi> </mrow> </msubsup> </mrow> </semantics></math>) in the BLUE band (~445 nm) for MODIS/Aqua (MA), MODIS/Terra (MT), VIIRS/NOAA20 (VNOAA20), and VIIRS/Suomi-NPP (VSNPP) sensors shown in red, green, blue, and magenta, respectively. Each inset corresponds to a different AC: (<b>a</b>) NIR iterative scheme (ITER-NIR), (<b>b</b>) Rayleigh correction AC, i.e., without aerosol correction (RC), (<b>c</b>) SeaDAS SWIR AC using bands SWIR1 and SWIR3 (GW94-SWIR13), and (<b>d</b>) PCA-SWIR13 AC (PCA-SWIR13).</p> "> Figure 11
<p>Same as <a href="#remotesensing-13-01050-f010" class="html-fig">Figure 10</a>, but in the NIR2 band (~860 nm): (<b>a</b>) NIR iterative scheme (ITER-NIR), (<b>b</b>) Rayleigh correction AC, i.e., without aerosol correction (RC), (<b>c</b>) SeaDAS SWIR AC using bands SWIR1 and SWIR3 (GW94-SWIR13), and (<b>d</b>) PCA-SWIR13 AC (PCA-SWIR13).</p> "> Figure 12
<p>Satellite-derived vs. field reflectance (TriOS or ASD in black) using several AC schemes: ITER-NIR (blue), GW94-NIR (orange), GW94-SWIR13 (green), and PCA-SWIR13 (red) for different match-ups: (<b>a</b>) RdP_20130227_PP01-11 (VSNPP overpass), (<b>b</b>) RdP_20130430_PP02-03 (MT overpass), (<b>c</b>) RdP_20130430_PP02-12 (VSNPP), (<b>d</b>) RdP_20151118_St26 (VSNPP), (<b>e</b>) RdP_20160925_St12 (MT), and (<b>f</b>) RdP_20160925_St13 (MT). Solid dotted lines show mean values of the 3 × 3 pixel window and uncertainty areas are shaded. Missing values correspond to AC or match-up failures. Simultaneous field measured turbidity (obtained using a portable HACH 2100Qis turbidimeter) is indicated inside each panel.</p> "> Figure 13
<p>Comparison of spatial patterns of water and aerosol reflectance retrieved by PCA-SWIR13, GW94-SWIR13, GW94-NIR, and ITER-NIR ACs from MODIS/Aqua image of the Río de la Plata acquired on 2014-05-16T15:35:00Z. RGB composite (<b>a</b>), water (<b>b</b>,<b>e</b>,<b>h</b>,<b>k</b>), and aerosol (<b>c</b>,<b>f</b>,<b>i</b>,<b>l</b>) reflectance at 443 nm, retrieved using PCA-SWIR13 (<b>b</b>,<b>c</b>), GW94-SWIR13 (<b>e</b>,<b>f</b>), GW94-NIR (<b>h</b>,<b>i</b>), and ITER-NIR (<b>k</b>,<b>l</b>) schemes. Plots show aerosol vs. water reflectance in the Río de la Plata’s turbidity front region marked with squares (<b>d</b>,<b>g</b>,<b>j</b>).</p> "> Figure 14
<p>Same as <a href="#remotesensing-13-01050-f013" class="html-fig">Figure 13</a> but at 859 nm and not considering the performance of the GW94-NIR scheme, as it retrieves trivially null water reflectance in the NIR bands. RGB composite (<b>a</b>), water (<b>b</b>,<b>e</b>,<b>h</b>), and aerosol (<b>c</b>,<b>f</b>,<b>i</b>) reflectance at 748 nm, retrieved using PCA-SWIR13 (<b>b</b>,<b>c</b>), and GW94-SWIR13 (<b>e</b>,<b>f</b>), ITER-NIR (<b>h</b>,<b>i</b>). Plots show aerosol vs. water reflectance in the Río de la Plata’s turbidity front region marked with squares (<b>d</b>,<b>g</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm Description
2.2. Radiative Transfer Simulations
2.3. Other AC Algorithms and Match-up Procedure
- NIR multi-scattering extrapolative approach (GW94-NIR): This AC was proposed by Gordon and Wang 1994 [1] and computes the aerosol signal accounting for multiple scattering effects and assuming black water in the NIR. It was the standard AC implemented for Sea-viewing Wide Field-of-View Sensor (SeaWIFS) imagery and is suitable for open waters;
- Iterative scheme in the NIR (ITER-NIR): This AC is based on an iterative procedure to subtract the non-zero contribution of the water to the NIR signal based on a convergence strategy and on a semi-empirical model for the water reflectance in the NIR and VIS. It is described in [6,7]. This AC has been shown to underestimate water reflectance and even fail to produce any retrieval in RdP’s maximum turbidity front [5,17], but it is considered here because it is the standard AC implemented by L2Gen in SeaDAS;
- Rayleigh correction scheme (RC): This AC only removes the effect of Rayleigh scattering and molecular absorption, i.e., it does not correct the contribution of aerosols to the TOA reflectance. This AC was considered because it is reasonable to test the extent to which an aerosol correction is necessary over the RdP’s highly reflective waters.
- If the number of AC-failure pixels (i.e., with NaN) was more than 4 out of 9 (>44.4%), the window was discarded (no match-up). Otherwise, the median and the standard deviation of the remaining pixels were taken as the reported value (x) and the absolute error (ux) of the window, respectively;
- If the coefficient of variation (CV = ux/x) exceeded 20% at a given band, the station was discarded (no match-up).
2.4. Evaluation Metrics
3. Field Data
3.1. Study Area
3.2. Radiometric Measurements
4. Results
4.1. Theoretical Performance
4.1.1. PCA Eigenvectors
4.1.2. Aerosol Signal Estimation (SOS Set 0: Black Water)
4.1.3. NIR Water Reflectance Retrieval (SOS Set W)
4.1.4. Effect of Noise on MODIS/Aqua Imagery
4.2. Application to Satellite Imagery
4.2.1. Match-ups
4.2.2. Spatial Analysis of Water and Aerosol Patterns
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness Over the Oceans with SeaWIFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. A Multiple Scattering Algorithm for Atmospheric Correction of Remotely Sensed Ocean Colour (MERIS Instrument): Principle and Implementation for Atmospheres Carrying Various Aerosols Including Absorbing Ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWIFS Imagery for Turbid Coastal and Inland Waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shi, W. Estimation of Ocean Contribution at the MODIS Near-Infrared Wavelengths Along the East Coast of the Us: Two Case Studies. Geophys. Res. Lett. 2005, 32, L13606. [Google Scholar] [CrossRef] [Green Version]
- Dogliotti, A.I.; Ruddick, K.; Nechad, B.; Lasta, C. Improving Water Reflectance Retrieval from MODIS Imagery in the Highly Turbid Waters of La Plata River. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 1–5 June 2015; Publishing House Nauka of RAS (Russian Federation): Moscow, Russia, 2011; Volume 734, p. 152. [Google Scholar]
- Stumpf, R.; Arnone, R.; W. Gould, R.; M. Martinolich, P.; Ransibrahmanakul, V. A Partially Coupled Ocean-Atmosphere Model for Retrieval of Water-Leaving Radiance from SeaWIFS in Coastal Waters. Nasa Tech. Memo 2003, 206892, 51–59. [Google Scholar]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M. Detection of Turbid Waters and Absorbing Aerosols for the MODIS Ocean Color Data Processing. Remote Sens. Environ. 2007, 110, 149–161. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples From LandSat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef] [Green Version]
- Gross, L.; Colzy, S.; Frouin, R.; Henry, P. A General Ocean Color Atmospheric Correction Scheme Based on Principal Components Analysis: Part I. Performance on Case 1 and Case 2 Waters. Spie Proc. 2007, 6680. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef] [Green Version]
- Pope, R.M.; Fry, E.S. Absorption Spectrum (380-700 Nm) of Pure Water. II. Integrating Cavity Measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Labrie, D.; Chylek, P. Refractive Indices of Water and Ice in the 0.65- to 2.5-µm Spectral Range. Appl. Opt. 1993, 32, 3531–3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-µm Wavelength Region. Appl. Opt. AO 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Frouin, R.; Deschamps, P.-Y.; Gross-Colzy, L.; Murakami, H.; Nakajima, T.Y. Retrieval of Chlorophyll-a Concentration via Linear Combination of ADEOS-II Global Imager Data. J. Oceanogr. 2006, 62, 331–337. [Google Scholar] [CrossRef]
- Philpot, W. The Derivative Ratio Algorithm: Avoiding Atmospheric Effects in Remote Sensing. Geosci. Remote Sens. IEEE Trans. 1991, 29, 350–357. [Google Scholar] [CrossRef]
- Gossn, J.I.; Ruddick, K.G.; Dogliotti, A.I. Atmospheric Correction of OLCI Imagery over Extremely Turbid Waters Based on the Red, NIR and 1016 Nm Bands and a New Baseline Residual Technique. Remote Sens. 2019, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Tanre, D.; Herman, M.; Deschamps, P.Y.; Leffe, A. de Atmospheric Modeling for Space Measurements of Ground Reflectances, Including Bidirectional Properties. Appl. Opt. AO 1979, 18, 3587–3594. [Google Scholar] [CrossRef] [PubMed]
- Lenoble, J.; Herman, M.; Deuzé, J.L.; Lafrance, B.; Santer, R.; Tanre, D. A Successive Order of Scattering Code for Solving the Vector Equation of Transfer in the Earth’s Atmosphere with Aerosols. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 479–507. [Google Scholar] [CrossRef]
- Lafrance, B. Manuel Utilisateur Du Code Des Osd; CNES, Laboratoire de Optique Atmosphérique: Lille, France, 2002; pp. 1–147. [Google Scholar]
- OBPG. Ocean Color Biology Processing Group Official Webpage. Available online: http://oceancolor.gsfc.nasa.gov (accessed on 17 January 2021).
- Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh Optical Depth Calculations. J. Atmos. Ocean. Technol. 1999, 16, 1854–1861. [Google Scholar] [CrossRef]
- World Climate Research Programme A Preliminary Cloudless Standard Atmosphere for Radiation Computation; World Meteorological Organization: Boulder, CO, USA, 1986.
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Yin, Z.; Lu, Z.; Ye, Y.; Zhang, F.; Shen, Q. Regional Vicarious Calibration of the SWIR-Based Atmospheric Correction Approach for MODIS-Aqua Measurements of Highly Turbid Inland Water. Remote Sens. 2019, 11, 1670. [Google Scholar] [CrossRef] [Green Version]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics. Advanced Studies in Theoretical and Applied Econometrics; Raj, B., Koerts, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; ISBN 978-94-010-5124-8. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Guerrero, R.A.; Acha, E.M.; Framiñan, M.B.; Lasta, C.A. Physical Oceanography of the Río de La Plata Estuary, Argentina. Cont. Shelf Res. 1997, 17, 727–742. [Google Scholar] [CrossRef]
- Mianzan, H.W.; Acha, E.M.; Guerrero, R.A.; Ramírez, F.C.; Sorarrain, D.R.; Simionato, C.G.; Borús, R. South Brazilian Marine Fauna in the Río de La Plata Estuary: Discussing the Barrier Hypothesis. In Proceedings of the COLACMAR IX (Congreso Latinoamericano en Ciencias Marinas), San Andres Isla, Columbia, 16–20 September 2001. [Google Scholar]
- Carvalho, M. Ocean Color Study Suggests the Presence of the La Plata Plume in Santos Bay, Brazil. Braz. J. Oceanogr. 2014, 62, 01–04. [Google Scholar]
- Garcia, C.; Garcia, V. Variability of Chlorophyll-a From Ocean Color Images in the La Plata Continental Shelf Region. Cont. Shelf Res. 2008, 28, 1568–1578. [Google Scholar] [CrossRef]
- Piola, A.; Romero, S. Space-Time Variability of the Plata River Plume. Gayana (Concepción) 2004, 68. [Google Scholar] [CrossRef]
- Piola, A.; Romero, S.; Zajaczkovski, U. Space-Time Variability of the Plata Plume Inferred from Ocean Color. Cont. Shelf Res. Cont Shelf Res 2008, 28, 1556–1567. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from Above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Mueller, L.J.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Li, Z.; Steward, R.G.; Hooker, S.; Mobley, C.; et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2003; pp. 1–78.
- Ruddick, K.G.; Voss, K.; Boss, E.; Castagna, A.; Frouin, R.; Gilerson, A.; Hieronymi, M.; Johnson, B.C.; Kuusk, J.; Lee, Z.; et al. A Review of Protocols for Fiducial Reference Measurements of Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data Over Water. Remote Sens. 2019, 11, 2198. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.G.; Voss, K.; Banks, A.C.; Boss, E.; Castagna, A.; Frouin, R.; Hieronymi, M.; Jamet, C.; Johnson, B.C.; Kuusk, J.; et al. A Review of Protocols for Fiducial Reference Measurements of Downwelling Irradiance for the Validation of Satellite Remote Sensing Data over Water. Remote Sens. 2019, 11, 1742. [Google Scholar] [CrossRef] [Green Version]
- Knaeps, E.; Dogliotti, A.I.; Raymaekers, D.; Ruddick, K.; Sterckx, S. In Situ Evidence of Non-Zero Reflectance in the OLCI 1020nm Band for a Turbid Estuary. Remote Sens. Environ. 2012, 120, 133–144. [Google Scholar] [CrossRef]
- Tilstone, G.; Moore, G. Regional Validation of MERIS Chlorophyll Products in North Sea Coastal Waters. Available online: http://https://odnature.naturalsciences.be/downloads/publications/tilstone_esawpp233_revampprotocols330.pdf (accessed on 17 January 2021).
- Gossn, J.I. Corrección Atmosférica de Imágenes de Color del Mar en aguas Turbias del Río de la Plata. Ph.D. Thesis, Universidad de Buenos Aires, Buenos Aires, Argentina, 2020. [Google Scholar]
- Duggin, M.J.; Sakhavat, H.; Lindsay, J. The Systematic and Random Variation of Recorded Radiance in a LandSat Thematic Mapper Image. Int. J. Remote Sens. 1985, 6, 1257–1261. [Google Scholar] [CrossRef]
- Curran, P.J.; Dungan, J.L. Estimation of Signal-To-Noise: A New Procedure Applied to AVIRIS Data. IEEE Trans. Geosci. Remote Sens. 1989, 27, 620–628. [Google Scholar] [CrossRef]
- Framiñan, M.B.; Brown, O.B. Study of the Río de La Plata Turbidity Front, Part 1: Spatial and Temporal Distribution. Cont. Shelf Res. 1996, 16, 1259–1282. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.-A. Sunglint Correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 Imagery over Inland and Sea Waters from SWIR Bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
Band Tag | MODIS | VIIRS | SABIA-Mar |
---|---|---|---|
BLUE | 443 nm | 443 nm | 443 nm |
GREEN | 555 nm | 551 nm | 555 nm |
RED | 645 nm | 667 nm | 665 nm |
NIR1 | 748 nm | 745 nm | 750 nm |
NIR2 | 859 nm | 862 nm | 865 nm |
SWIR1 | 1240 nm | 1238 nm | 1240 nm |
SWIR2 | 1640 nm | 1601 nm | 1640 nm |
SWIR3 | 2130 nm | 2257 nm |
CNES-SOS Parameter | Input Value/Range |
---|---|
λ (Wavelength) | 400 nm to 2500 nm. step 2 nm (VIS/NIR) and 10 nm (far SWIR). |
θs (Solar Zenith Angle, SZA) | 15° to 60° (step 15°) |
θv (Viewing Zenith Angle, VZA) | 0° to 45° (step 15°) |
ϕ (Relative Azimuth Angle, RAA) | 0° to 180° (step 15°) |
ρw (Water reflectance) | Set W: ASD in situ (RdP), see Figure 2 |
w (Wind speed) | 0, 2, 4, 8, 16 m/s |
nw (Relative air–water interface) | 1.334 |
τr (Rayleigh optical thickness) | Bodhaine et al., 1999 [22] |
δr (Depolarization Factor) | Bodhaine et al., 1999 [22] |
Hr (e-folding height scale for molecules) | 8 km |
τa (Aerosol optical thickness at 500 nm) | 0:0.1:0.4 |
dVa/dlnr (Aerosol granulometry) | Continental, Marine, and Urban scenarios [23] |
na + ima (Refractive index, aerosols) | Continental, Marine, and Urban scenarios [23] |
Ha (e-folding height scale for aerosols) | 2 km |
nmax (Maximum scattering order) | 20 |
Ipol (Polarization index) | 1 (consider polarization) |
Atmospheric Correction (AC) | Aer_Opt (Description) | Aer_Wave_Short | Aer_Wave_Long |
---|---|---|---|
GW94-NIR | −1 (Multi-scattering with 2-band model selection) | NIR1 | NIR2 |
ITER-NIR | −2 (Multi-scattering with 2-band, RH-based model selection and iterative NIR correction) | NIR1 | NIR2 |
GW94-SWIR13 | −1 (Multi-scattering with 2-band model selection) | SWIR1 | SWIR3 |
RC | −99 (No aerosol correction) | – | – |
Band (nm) (Band Tag) | PCA-SWIR123 (VIIRS) Explained Variance (%) | Inversion Conditional Number | PCA-SWIR13 (VIIRS) Explained Variance (%) | Inversion Conditional Number | |||
---|---|---|---|---|---|---|---|
1 Component | 2 Components | 3 Components (Total Used) | 1 Component | 2 Components (Total used) | |||
443 (BLUE) | 69.04 | 95.36 | 99.43 | 389.3 | 67.14 | 95.42 | 4.8 |
551 (GREEN) | 73.52 | 97.04 | 99.54 | 26.9 | 72.46 | 97.28 | 4.0 |
667 (RED) | 77.08 | 97.49 | 99.69 | 14.0 | 76.16 | 97.70 | 3.4 |
74 (NIR1) | 79.44 | 97.69 | 99.74 | 10.3 | 78.50 | 97.92 | 2.9 |
862 (NIR2) | 82.87 | 98.10 | 99.81 | 6.2 | 81.92 | 98.38 | 2.3 |
Eigenvector Component | Band to be Corrected | ||||
---|---|---|---|---|---|
BLUE | GREEN | RED | NIR1 | NIR2 | |
(a) | |||||
e1PCA(λtbc) | 0.56754 | 0.64103 | 0.64783 | 0.63771 | 0.62218 |
e1PCA(SWIR1) | 0.62019 | 0.57974 | 0.57276 | 0.5766 | 0.58281 |
e1PCA(SWIR3) | 0.54153 | 0.50297 | 0.50226 | 0.51074 | 0.52271 |
e2PCA(λtbc) | 0.80075 | 0.73023 | 0.70876 | 0.69681 | 0.66258 |
e2PCA(SWIR1) | −0.26275 | −0.25892 | −0.2115 | −0.14924 | −0.03639 |
e2PCA(SWIR3) | −0.53829 | −0.63223 | −0.673 | −0.70155 | −0.74811 |
e3PCA(λtbc) | −0.19155 | −0.2363 | −0.27924 | −0.32829 | −0.41698 |
e3PCA(SWIR1) | 0.73914 | 0.77257 | 0.79197 | 0.80328 | 0.81179 |
e3PCA(SWIR3) | −0.64574 | −0.58932 | −0.54297 | −0.49696 | −0.4088 |
(b) | |||||
e1PCA(λtbc) | 0.57084 | 0.64113 | 0.64876 | 0.6392 | 0.62309 |
e1PCA(SWIR1) | 0.62211 | 0.58309 | 0.57521 | 0.57871 | 0.58499 |
e1PCA(SWIR3) | 0.53583 | 0.49895 | 0.49824 | 0.50648 | 0.51918 |
e2PCA(λtbc) | 0.79439 | 0.72537 | 0.7005 | 0.68722 | 0.64802 |
e2PCA(SWIR1) | −0.25348 | −0.24815 | −0.19558 | −0.13422 | −0.01441 |
e2PCA(SWIR3) | −0.55199 | −0.64208 | −0.68633 | −0.71394 | −0.76149 |
e3PCA(λtbc) | −0.20758 | −0.25057 | −0.29734 | −0.34518 | −0.43798 |
e3PCA(SWIR1) | 0.74076 | 0.77358 | 0.79428 | 0.80442 | 0.81091 |
e3PCA(SWIR3) | −0.6389 | −0.58205 | −0.52981 | −0.48349 | −0.38806 |
Wavelength (nm) (Band Tag) | Noise Equivalent Reflectance, NEρRC |
---|---|
748 (NIR1) | 0.001845 |
859 (NIR2) | 0.003686 |
1240 (SWIR1) | 0.000279 |
1640 (SWIR2) | 0.000178 |
2130 (SWIR3) | 0.000174 |
AC/Sensor | Noise Added | MAD | Slope | Int | R2 |
---|---|---|---|---|---|
PCA-SWIR13 MODIS/Aqua | No | 0.0005 | 0.984 | −0.0006 | 0.999 |
Yes | 0.0008 | 1.006 | −0.0008 | 0.998 |
Band | AC | N | #Neg | RMSE | MAD | MAPD | MD | Slope | Int | R2 |
---|---|---|---|---|---|---|---|---|---|---|
BLUE | ITER-NIR | 9 | 5 | 0.037 | 0.032 | 93.7 | −0.026 | 0.074 | 0.000 | 0.000 |
GW94-NIR | 6 | 6 | 0.039 | 0.035 | 104.2 | −0.051 | 1.011 | −0.054 | 0.663 | |
GW94-SWIR13 | 20 | 5 | 0.031 | 0.025 | 70.0 | −0.016 | −0.154 | 0.036 | 0.170 | |
PCA-SWIR13 | 34 | 1 | 0.027 | 0.024 | 74.3 | 0.019 | 0.330 | 0.041 | 0.061 | |
GREEN | ITER-NIR | 16 | 0 | 0.035 | 0.027 | 34.6 | −0.008 | 0.214 | 0.039 | 0.233 |
GW94-NIR | 17 | 5 | 0.043 | 0.036 | 49.5 | −0.049 | −0.141 | 0.024 | 0.072 | |
GW94-SWIR13 | 36 | 0 | 0.025 | 0.017 | 22.2 | −0.006 | 0.426 | 0.037 | 0.297 | |
PCA-SWIR13 | 40 | 0 | 0.020 | 0.017 | 23.9 | 0.011 | 0.536 | 0.046 | 0.429 | |
RED | ITER-NIR | 27 | 7 | 0.053 | 0.040 | 40.8 | −0.033 | 0.147 | 0.055 | 0.047 |
GW94-NIR | 34 | 1 | 0.048 | 0.034 | 32.9 | −0.033 | 0.503 | 0.014 | 0.161 | |
GW94-SWIR13 | 40 | 0 | 0.019 | 0.015 | 14.7 | −0.002 | 0.679 | 0.026 | 0.656 | |
PCA-SWIR13 | 40 | 0 | 0.023 | 0.019 | 20.5 | 0.013 | 0.812 | 0.027 | 0.671 | |
NIR1 | ITER-NIR | 17 | 0 | 0.017 | 0.013 | 26.9 | −0.008 | 0.490 | 0.014 | 0.847 |
GW94-SWIR13 | 34 | 0 | 0.011 | 0.007 | 16.4 | −0.004 | 0.935 | 0.002 | 0.843 | |
PCA-SWIR13 | 37 | 0 | 0.009 | 0.007 | 16.0 | 0.000 | 1.029 | 0.002 | 0.866 | |
NIR2 | ITER-NIR | 21 | 4 | 0.022 | 0.015 | 50.5 | −0.014 | 0.198 | 0.012 | 0.113 |
GW94-SWIR13 | 32 | 0 | 0.016 | 0.009 | 32.2 | −0.003 | 0.908 | 0.001 | 0.882 | |
PCA-SWIR13 | 33 | 0 | 0.015 | 0.008 | 27.5 | 0.000 | 0.996 | 0.000 | 0.920 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gossn, J.I.; Frouin, R.; Dogliotti, A.I. Atmospheric Correction of Satellite Optical Imagery over the Río de la Plata Highly Turbid Waters Using a SWIR-Based Principal Component Decomposition Technique. Remote Sens. 2021, 13, 1050. https://doi.org/10.3390/rs13061050
Gossn JI, Frouin R, Dogliotti AI. Atmospheric Correction of Satellite Optical Imagery over the Río de la Plata Highly Turbid Waters Using a SWIR-Based Principal Component Decomposition Technique. Remote Sensing. 2021; 13(6):1050. https://doi.org/10.3390/rs13061050
Chicago/Turabian StyleGossn, Juan Ignacio, Robert Frouin, and Ana Inés Dogliotti. 2021. "Atmospheric Correction of Satellite Optical Imagery over the Río de la Plata Highly Turbid Waters Using a SWIR-Based Principal Component Decomposition Technique" Remote Sensing 13, no. 6: 1050. https://doi.org/10.3390/rs13061050