A Nonlinear Radiometric Normalization Model for Satellite Imgaes Time Series Based on Artificial Neural Networks and Greedy Algroithm
"> Figure 1
<p>Flow diagram showing steps used by the proposed nonlinear radiometric normalization (NMAG) model for rediometric normalization of Satellite Image Time Series (SITS).</p> "> Figure 2
<p>The schematic diagram of the artificial neural network (ANN) regression model used in NMAG.</p> "> Figure 3
<p>Overview of the study area: (<b>a</b>) the Landsat-8 image with Path=122 and Row=38 in the Worldwide Reference System (WRS); (<b>b</b>) The false color composite image in the study area (R: B7, G: B5, B: B4).</p> "> Figure 4
<p>False-color composite image of SITS in the study area (R: B7, G: B5, B: B4).</p> "> Figure 5
<p>The selection result of Pseudo-invariant feature points (PIFs). (<b>a</b>) The distribution of <math display="inline"><semantics> <msub> <mi>k</mi> <mi>p</mi> </msub> </semantics></math> values in the study area. The water bodies pixels in light blue; the road, bare land, and urban pixels in gray; and the vegetation pixels are in orange or dark brown. (<b>b</b>) The selection result of PIFs. The white pixels represent PIF that is mainly selected from artificial buildings and bare land.</p> "> Figure 6
<p>The relative radiometric normalized images in SITS.</p> "> Figure 7
<p>(<b>a</b>) The mosaic pattern composed of four normalized images taken from from 10 and 26 December 2017, and 13 and 29 December 2018, respectively. The Resultant images have similiar color and color contrast to each other. (<b>b</b>)The mosaic pattern of the urban area, and the bundary of this area is marked in red box in <b>a</b>. (<b>c</b>) the mosaic pattern of the artificial building area, and the bundary of this area is marked in black box in <b>a</b>. (<b>d</b>) The comparison of time-series’ curves of DN values (DN-TSC) from the near-infrared Band (Band 5) for the road pixel (marked in red point in <b>a</b>) before (marked in black line) and after (marked in red line) radiometric normalization.</p> "> Figure 8
<p>The relative radiometric normalization results of DN values of cropland pixels. (<b>a</b>) The location of cropland pixels and the boundary of crop images are marked in red point and black box, respectively. (<b>b</b>) The cropland images during the growth period of corn. (<b>c</b>) The Comparison of the DN-TSC from the near-infrared Band (band 5) for the cropland pixel before (marked by a black line) and after (marked by a red line) the radiometric normalization.</p> "> Figure 9
<p>The error matrices and the frequency distribution curve of the root mean square error (RMSE) for the normalized results obtained using NMAG and two contrasting methods (refered as Contrast Method 1 (CM1) and Contrast Method 2 (CM2)). As the color transitions from blue to red, the radiometric distortion increases. The error matrices of RMSE obtained using (<b>a</b>) CM1, (<b>b</b>) CM2, and (<b>c</b>) NMAG. (<b>d</b>) The frequency distribution curve of RMSE obtained using NMAG and two constrasting methods.</p> "> Figure 10
<p>The Comparison of time-series’curve of NDVI values (NDVI-TSC) calculated from pixels in corpland images before (marked in black line) and after (marked in red line) the radiometric normalization.</p> ">
Abstract
:1. Introduction
2. Description of Methodology
3. Materials
3.1. Study Area and Satellite Data
3.2. The Preparation of PIFs
4. Results
4.1. Experimental Results
4.2. Comparison with Other Methods
4.3. Application of NMAG to Vegetation Index
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xi, W.; Du, S.; Wang, Y.C.; Zhang, X. A spatiotemporal cube model for analyzing satellite image time series: Application to land-cover mapping and change detection. Remote Sens. Environ. 2019, 231, 111212. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Hou, Z.; Tokola, T. Relative radiometric correction of multi-temporal ALOS AVNIR-2 data for the estimation of forest attributes. ISPRS J. Photogramm. Remote Sens. 2012, 68, 69–78. [Google Scholar] [CrossRef]
- Yang, X.; Lo, C.P. Relative radiometric normalization performance for change detection from multi-date satellite images. Photogramm. Eng. Remote Sens. 2000, 66, 967–980. [Google Scholar]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic radiometric normalization of multitemporal satellite imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Helmer, E.H.; Ruefenacht, B. A comparison of radiometric normalization methods when filling cloud gaps in Landsat imagery. Can. J. Remote Sens. 2007, 33, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Biday, S.G.; Bhosle, U. Radiometric Correction of Multitemporal Satellite Imagery. J. Comput. Sci. 2010, 6, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection. Remote Sens. Environ. 2002, 82, 123–134. [Google Scholar] [CrossRef]
- Schott, J.R.; Salvaggio, C.; Volchok, W.J. Radiometric scene normalization using pseudoinvariant features. Remote Sens. Environ. 1988, 26, 1–16. [Google Scholar] [CrossRef]
- Jensen, J.R. Urban/Suburban Land Use Analysis. In Manual of Remote Sensing; Colwell, R.N., Ed.; American Society of Photogrammetry: Falls Church, VA, USA, 1983. [Google Scholar]
- Du, Y.; Cihlar, J.; Beaubien, J.; Latifovic, R. Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas. IEEE Trans. Geosci. Remote Sens. 2001, 39, 623–634. [Google Scholar] [CrossRef]
- Olthof, I.; Pouliot, D.; Fernandes, R.; Latifovic, R. Landsat-7 ETM+ radiometric normalization comparison for northern mapping applications. Remote Sens. Environ. 2005, 95, 388–398. [Google Scholar] [CrossRef]
- Ghanbari, H.; Homayouni, S.; Ghamisi, P.; Safari, A. Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Based on a Gaussian Mixture Model and Error Ellipse. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4526–4533. [Google Scholar] [CrossRef]
- Liu, S.H.; Lin, C.W.; Chen, Y.R.; Tseng, C.M. Automatic radiometric normalization with genetic algorithms and a Kriging model. Comput. Geosci. 2012, 43, 42–51. [Google Scholar] [CrossRef]
- Sadeghi, V.; Ebadi, H.; Ahmadi, F.F. A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods. Appl. Math. Model. 2013, 37, 6437–6445. [Google Scholar] [CrossRef]
- Seo, D.; Kim, Y.; Eo, Y.; Park, W.; Park, H. Generation of Radiometric, Phenological Normalized Image Based on Random Forest Regression for Change Detection. Remote Sens. 2017, 9, 1163. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Tang, P.; Hu, C. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images. Remote Sens. 2018, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Sun, X.; Wang, X.; Fan, J.; Luo, J.; Shen, Y.; Yang, Y. A long time-series radiometric normalization method for landsat images. Sensors 2018, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, J. Matroids and the greedy algorithm. Math. Program. 1971, 1, 127–136. [Google Scholar] [CrossRef]
- Qi, B.; Zhuang, Y.; Chen, H.; Dong, S.; Li, L. Fusion Feature Multi-Scale Pooling for Water Body Extraction from Optical Panchromatic Images. Remote Sens. 2019, 11, 245. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhao, H.; Jiang, Y.; Lu, X. A Method for the Optimized Design of a Rain Gauge Network Combined with Satellite Remote Sensing Data. Remote Sens. 2020, 12, 194. [Google Scholar] [CrossRef] [Green Version]
- Ou, G.; Li, C.; Lv, Y.; Wei, A.; Xiong, H.; Xu, H.; Wang, G. Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sens. 2019, 11, 738. [Google Scholar] [CrossRef] [Green Version]
- Wehbe, Y.; Temimi, M.; Adler, R.F. Enhancing Precipitation Estimates Through the Fusion of Weather Radar, Satellite Retrievals, and Surface Parameters. Remote Sens. 2020, 12, 1342. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Mao, J.; Mohiuddin, K.M. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Schultz, M.; Clevers, J.G.P.W.; Carter, S.; Verbesselt, J.; Avitabile, V.; Quang, H.V.; Herold, M. Performance of vegetation indices from Landsat time series in deforestation monitoring. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 318–327. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with Erts. Nasa Spec. Publ. 1974, 351, 309–317. [Google Scholar]
2017-10-23 | 2017-11-08 | 2017-11-24 | 2017-12-10 | 2017-12-26 | mean_pccs | |
2017-10-23 | 1.00 | 0.89 | 0.83 | 0.79 | 0.71 | 0.84 |
2017-11-08 | 0.89 | 1.00 | 0.91 | 0.88 | 0.81 | 0.90 |
2017-11-24 | 0.83 | 0.91 | 1.00 | 0.92 | 0.85 | 0.90 |
2017-12-10 | 0.79 | 0.88 | 0.92 | 1.00 | 0.89 | 0.90 |
2017-12-26 | 0.71 | 0.81 | 0.85 | 0.89 | 1.00 | 0.85 |
mean_pccs | 0.84 | 0.90 | 0.90 | 0.90 | 0.85 | 0.88 |
2017-10-23 | 2017-11-08 | 2017-11-24 | 2017-12-10 | 2017-12-26 | mean_pccs | |
2018-09-24 | 0.71 | 0.62 | 0.69 | 0.63 | 0.60 | 0.65 |
2018-10-10 | 0.73 | 0.66 | 0.75 | 0.68 | 0.65 | 0.69 |
2018-10-26 | 0.72 | 0.64 | 0.74 | 0.69 | 0.65 | 0.69 |
2018-12-13 | 0.70 | 0.65 | 0.73 | 0.70 | 0.65 | 0.69 |
2018-12-29 | 0.67 | 0.61 | 0.69 | 0.68 | 0.64 | 0.66 |
mean_pccs | 0.70 | 0.64 | 0.72 | 0.68 | 0.64 | 0.67 |
Method | CM1 | CM2 | NMAG |
---|---|---|---|
641.39 | 543.47 | 497.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Zou, L.; Sun, J.; Zhang, H.; Zhang, W.; Shen, X. A Nonlinear Radiometric Normalization Model for Satellite Imgaes Time Series Based on Artificial Neural Networks and Greedy Algroithm. Remote Sens. 2021, 13, 933. https://doi.org/10.3390/rs13050933
Yin Z, Zou L, Sun J, Zhang H, Zhang W, Shen X. A Nonlinear Radiometric Normalization Model for Satellite Imgaes Time Series Based on Artificial Neural Networks and Greedy Algroithm. Remote Sensing. 2021; 13(5):933. https://doi.org/10.3390/rs13050933
Chicago/Turabian StyleYin, Zhaohui, Lejun Zou, Jiayu Sun, Haoran Zhang, Wenyi Zhang, and Xiaohua Shen. 2021. "A Nonlinear Radiometric Normalization Model for Satellite Imgaes Time Series Based on Artificial Neural Networks and Greedy Algroithm" Remote Sensing 13, no. 5: 933. https://doi.org/10.3390/rs13050933
APA StyleYin, Z., Zou, L., Sun, J., Zhang, H., Zhang, W., & Shen, X. (2021). A Nonlinear Radiometric Normalization Model for Satellite Imgaes Time Series Based on Artificial Neural Networks and Greedy Algroithm. Remote Sensing, 13(5), 933. https://doi.org/10.3390/rs13050933