Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery
"> Figure 1
<p>An overview of the study area (<b>a</b>) The location and extent of the study area in Colombia and Antioquia; (<b>b</b>) Sentinel-2 (S2B) RGB image (18 June 2019) of the study area with the white oval locating the pilot site (around the town of El Bagre at latitude 7°36’17.88’’N and longitude 74°48’32.32’’W) that is used for the validation of the methodology, (<b>c</b>) DEM SRTM.</p> "> Figure 1 Cont.
<p>An overview of the study area (<b>a</b>) The location and extent of the study area in Colombia and Antioquia; (<b>b</b>) Sentinel-2 (S2B) RGB image (18 June 2019) of the study area with the white oval locating the pilot site (around the town of El Bagre at latitude 7°36’17.88’’N and longitude 74°48’32.32’’W) that is used for the validation of the methodology, (<b>c</b>) DEM SRTM.</p> "> Figure 2
<p>(<b>a</b>) Mean temperature and (<b>b</b>) Seasonal temperature variability of the study area (boundary shown as black rectangle) and its surroundings (Antioquia’s administrative boundaries shown as dotted polygon). The data source is WorldClim (30 arc-second resolution), a global gridded historical dataset (1960 to 1991) that has been vital for various environmental studies. The data were obtained through Google Earth Engine (<a href="https://earthengine.google.com/:collection" target="_blank">https://earthengine.google.com/:collection</a> WORLDCLIM-V1-BIO).</p> "> Figure 3
<p>An illustration of reflectance spectra of a selection of cloud and cloud-shadow pixels along with water and bare soil mining pixels; (<b>a</b>) A selection of the region of interest on an RGB Sentinel-2 (S2B) (18 June 2019); (<b>b</b>) Mean spectra ± 1 standard deviation of selected regions plotted using the Semi-Automated Classification plugin (SCP) [<a href="#B49-remotesensing-13-00736" class="html-bibr">49</a>].</p> "> Figure 4
<p>An illustration of cloud and cloud shadow geometry.</p> "> Figure 5
<p>An overview of the steps in improving classified cloud shadows for the reduction of false positives. Specific python libraries and functions are indicated in blue where applicable.</p> "> Figure 6
<p>Examples of clouds and their shadows illustrating their possible separation and adjacency using a Sentinel-2 image of the study area.</p> "> Figure 7
<p>An illustration of the cloud and cloud-shadow detection procedure: (<b>a</b>) RGB view of an image acquired on 27 August 2018; (<b>b</b>) the results of the supervised classification of the Support-Vector-Machine SVM) with detected clouds (white) and cloud shadows (black stripes); (<b>c</b>) the retained cloud shadows of low dense clouds detected by the first iteration; (<b>d</b>) the retained and excluded cloud shadows by the end of the second iteration where the excluded clouds are relabeled as clear pixels.</p> "> Figure 8
<p>The pilot site and reference data (<b>a</b>) Reference locations in the pilot site shown on band 2 of Sentinel-2 image acquired on 18 June 2019 (<b>b</b>) Photo of a mining site in the pilot area.</p> "> Figure 9
<p>(<b>a</b>) Sun and (<b>b</b>) sensor viewing angles for the study area of the Sentinel-2 image acquired on 18 June 2019.</p> "> Figure 10
<p>Cloud and cloud shadow detection for the sentinel-2 image acquired on 18 June 2019 (<b>a</b>) RGB view of the image over the study area, (<b>b</b>) SVM classification results of clouds and cloud shadows, (<b>c</b>) <span class="html-italic">φ<sub>a</sub></span> [degrees], (<b>d</b>) <span class="html-italic">d</span>/<span class="html-italic">h</span> [–], (<b>e</b>) geometry-based improved cloud shadows.</p> "> Figure 10 Cont.
<p>Cloud and cloud shadow detection for the sentinel-2 image acquired on 18 June 2019 (<b>a</b>) RGB view of the image over the study area, (<b>b</b>) SVM classification results of clouds and cloud shadows, (<b>c</b>) <span class="html-italic">φ<sub>a</sub></span> [degrees], (<b>d</b>) <span class="html-italic">d</span>/<span class="html-italic">h</span> [–], (<b>e</b>) geometry-based improved cloud shadows.</p> "> Figure 11
<p><span class="html-italic">h</span> values tested during the first iteration and the corresponding retained shadows. The maxima represent the <span class="html-italic">h<sub>emp</sub></span> values in <a href="#remotesensing-13-00736-t004" class="html-table">Table 4</a>.</p> "> Figure 12
<p>Sentinel-2 RGB view of the three images and their corresponding detected dense clouds, and cloud shadows, along with cirrus cloud provided by Sen2Cor (<b>a</b>) 24 January 2019, (<b>b</b>) 27 August 2019, and (<b>c</b>) 5 December 2019.</p> "> Figure 13
<p>Sentinel-2 18 June 2019 close-up (<b>a</b>) RGB view, (<b>b</b>) cloud and cloud-shadow detection by the current approach, (<b>c</b>) cloud and cloud-shadow detection by Sen2Cor.</p> "> Figure 14
<p>True positives of visually detected using the current approach compared to Sen2Cor (<b>a</b>) dense clouds (512 and 581 reference pixels as indicated in the first column) and (<b>b</b>) shadows (470 and 496 reference pixels as indicated in the first column).</p> "> Figure 15
<p>Specificity in the correct negative identification with respect to dense clouds and shadows for the reference date of the pilot site (<b>a</b>) mining areas (<b>b</b>) water bodies.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Classification for Dense Cloud and Shadow Detection
3.2. Geometry-Based Improvement of Cloud Shadow Detection
3.2.1. Direction of Cloud Shadow with Respect to Cloud Projection
3.2.2. Location of Shadow with Respect to Cloud Projection
3.2.3. Implementation of the Geometry-Based Improvement
3.3. Cirrus Clouds
3.4. Assessment with Images from Different Seasons and Diverse Cloud Cover
3.5. Input Uncertainty and Error Sources
4. Results
4.1. Classification and Selection of Suitable Features
4.2. Cloud-Shadow and Cloud Geometry Illustration for Various Seasons and Cloud Cover
4.3. Validation over the Pilot Site
5. Limitations and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministerio de Minas y Energía, C. Decreto 1666, Bogotá. Online. 2016. Available online: https://www.minenergia.gov.co/documents/10180/23517/37238-Decreto-1666-21Oct2016.pdf/17f4f90c-4481-47cd-a084-c7fa0319f9cf (accessed on 16 January 2021).
- Bustamante, N.; University of Queensland; Danoucaras, N.; McIntyre, N.; Martínez, J.C.D.; Baena, O.J.R.; De Colombia, U.N.; Mclntyre, N. Review of improving the water management for the informal gold mining in Colombia. Rev. Fac. Ing. Univ. Antioq. 2016, 79, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Teschner, B.; Smith, N.M.; Borrillo-Hutter, T.; John, Z.Q.; Wong, T.E. How efficient are they really? A simple testing method of small-scale gold miners’ gravity separation systems. Miner. Eng. 2017, 105, 44–51. [Google Scholar] [CrossRef]
- Minambiente. Entra en Vigencia Prohibición del Mercurio en la Minería de oro en Colombia. 2018. Available online: https://www.minambiente.gov.co/index.php/noticias/4021-entra-en-vigencia-prohibicion-del-mercurio-en-la-mineria-de-oro (accessed on 16 February 2021).
- Ibrahim, E.; Lema, L.; Barnabé, P.; Lacroix, P.; Pirard, E. Small-scale surface mining of gold placers: Detection, mapping, and temporal analysis through the use of free satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102194. [Google Scholar] [CrossRef]
- Diaz, F.A.; Katz, L.E.; Lawler, D.F. Mercury pollution in Colombia: Challenges to reduce the use of mercury in artisanal and small-scale gold mining in the light of the Minamata Convention. Water Int. 2020, 45, 730–745. [Google Scholar] [CrossRef]
- Rettberg, A.; Ortiz-Riomalo, J.F. Golden Opportunity, or a New Twist on the Resource–Conflict Relationship: Links Between the Drug Trade and Illegal Gold Mining in Colombia. World Dev. 2016, 84, 82–96. [Google Scholar] [CrossRef]
- Betancur-Corredor, B.; Loaiza-Usuga, J.C.; Denich, M.; Borgemeister, C. Gold mining as a potential driver of development in Colombia: Challenges and opportunities. J. Clean. Prod. 2018, 199, 538–553. [Google Scholar] [CrossRef]
- Portafolio. Producción Ilegal de Oro es Más del 70% del Mercado. 2019. Available online: https://www.portafolio.co/economia/produccion-ilegal-de-oro-es-mas-del-70-del-mercado-528760 (accessed on 11 December 2020).
- Hausermann, H.; Ferring, D.; Atosona, B.; Mentz, G.; Amankwah, R.; Chang, A.; Hartfield, K.; Effah, E.; Asuamah, G.Y.; Mansell, C.; et al. Land-grabbing, land-use transformation and social differentiation: Deconstructing “small-scale” in Ghana’s recent gold rush. World Dev. 2018, 108, 103–114. [Google Scholar] [CrossRef]
- UNODC. Alluvial Gold Exploitation: Evidences from Remote Sensing 2016; United Nations Office of Drugs and Crime: Vienna, Austria, 2018. [Google Scholar]
- Gallwey, J.; Robiati, C.; Coggan, J.; Vogt, D.; Eyre, M. A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote. Sens. Environ. 2020, 248, 111970. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, D.; Li, S.; Yu, Y. A stepwise cloud shadow detection approach combining geometry determination and SVM classification for MODIS data. Int. J. Remote. Sens. 2012, 34, 211–226. [Google Scholar] [CrossRef]
- Baetens, L.; Desjardins, C.; Hagolle, O. Validation of Copernicus Sentinel-2 Cloud Masks Obtained from MAJA, Sen2Cor, and FMask Processors Using Reference Cloud Masks Generated with a Supervised Active Learning Procedure. Remote. Sens. 2019, 11, 433. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Zhu, Z.; Woodcock, C.E. Cirrus clouds that adversely affect Landsat 8 images: What are they and how to detect them? Remote. Sens. Environ. 2020, 246, 111884. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Space Phys. 1998, 103, 32141–32157. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote. Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote. Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A processor for users. European Space Agency (Special Publication); SP-740; ESA SP: Paris, France, 2016; pp. 9–13. [Google Scholar]
- Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote. Sens. 2016, 8, 666. [Google Scholar] [CrossRef] [Green Version]
- VITO. iCOR Plugin for SNAP Toolbox, Software User Manual, Version 1.0 Contents; Technical Report for VITO Remote Sensing Unit; VITO: Mol, Belgium, 2017. [Google Scholar]
- Baraldi, A.; Tiede, D. AutoCloud+, a “Universal” Physical and Statistical Model-Based 2D Spatial Topology-Preserving Software for Cloud/Cloud–Shadow Detection in Multi-Sensor Single-Date Earth Observation Multi-Spectral Imagery—Part 1: Systematic ESA EO Level 2 Product Generation at the Ground Segment as Broad Context. ISPRS Int. J. Geo-Inf. 2018, 7, 457. [Google Scholar] [CrossRef] [Green Version]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 2018, 144, 235–253. [Google Scholar] [CrossRef]
- Nazarova, T.; Martin, P.; Giuliani, G. Monitoring Vegetation Change in the Presence of High Cloud Cover with Sentinel-2 in a Lowland Tropical Forest Region in Brazil. Remote. Sens. 2020, 12, 1829. [Google Scholar] [CrossRef]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote. Sens. 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA ATBD Algorithm Theoretical Basis Document; Technical Report for CNES+CESBIO and DLR. 2017. Available online: https://www.theia-land.fr/wp-content-theia/uploads/sites/2/2018/12/atbd_maja_071217.pdf (accessed on 16 February 2021).
- Mateo-García, G.; Gómez-Chova, L.; Amorós-López, J.; Muñoz-Marí, J.; Camps-Valls, G. Multitemporal Cloud Masking in the Google Earth Engine. Remote. Sens. 2018, 10, 1079. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Shi, J.; Husi, L.; Zhao, T.; Ji, D.; Xiong, C.; Gao, B. Effect of Solar-Cloud-Satellite Geometry on Land Surface Shortwave Radiation Derived from Remotely Sensed Data. Remote. Sens. 2017, 9, 690. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Trishchenko, A.; Khlopenkov, K. Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote. Sens. Environ. 2008, 112, 4167–4185. [Google Scholar] [CrossRef]
- Li, P.; Dong, L.; Xiao, H.; Xu, M. A cloud image detection method based on SVM vector machine. Neurocomputing 2015, 169, 34–42. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring Rice Agriculture across Myanmar Using Time Series Sentinel-1 Assisted by Landsat-8 and PALSAR-2. Remote. Sens. 2017, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Talema, T.; Hailu, B.T. Mapping rice crop using sentinels (1 SAR and 2 MSI) images in tropical area: A case study in Fogera wereda, Ethiopia. Remote. Sens. Appl. Soc. Environ. 2020, 18, 100290. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote. Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Müller-Wilm, U. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis Document. ref s2pad-atbd-0001 Issue 2.0; European Space Agency: Paris, France, 2012; 2p. [Google Scholar]
- ESA. European Space Agency Technical Guide: Cloud Masks (L1C). 2020. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-1c/cloud-masks (accessed on 4 November 2020).
- ESA. European Space Agency Technical Guide: Cloud Masks (L2A). 2020. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 4 November 2020).
- Debouny, T.; Deprez, R.; Ibrahim, E.; Buydens, G.; Pirard, E. Assessing the discrepancy in open-source atmospheric correction of Sentinel-2 acquisitions for a tropical mining area in New Caledonia. In Proceedings of the Sixth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2018), Paphos, Cyprus, 26–29 March 2018; Volume 10773, p. 107730F. [Google Scholar]
- Sun, L.; Liu, X.; Yang, Y.; Chen, T.; Wang, Q.; Zhou, X. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data. ISPRS J. Photogramm. Remote. Sens. 2018, 138, 193–207. [Google Scholar] [CrossRef]
- Lacroix, P.; Moser, F.; Benvenuti, A.; Piller, T.; Jensen, D.; Petersen, I.; Planque, M.; Ray, N. MapX: An open geospatial platform to manage, analyze and visualize data on natural resources and the environment. SoftwareX 2019, 9, 77–84. [Google Scholar] [CrossRef]
- Fisher, A. Cloud and Cloud-Shadow Detection in SPOT5 HRG Imagery with Automated Morphological Feature Extraction. Remote. Sens. 2014, 6, 776–800. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote. Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E. Evaluating the Performance of a Random Forest Kernel for Land Cover Classification. Remote. Sens. 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote. Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote. Sens. 2013, 6, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote. Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote. Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Congedo, L. Semi-Automatic Classification Plugin Documentation Release 7.0.0.1. 2020. Available online: https://semiautomaticclassificationmanual.readthedocs.io/fr/latest/introduction.html (accessed on 16 February 2021).
- ESA. European Space Agency Technical Guide: Sentinel-2 Orbit. 2020. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/satellite-description/orbit (accessed on 4 November 2020).
- Le Hégarat-Mascle, S.; André, C. Use of Markov Random Fields for automatic cloud/shadow detection on high resolution optical images. ISPRS J. Photogramm. Remote. Sens. 2009, 64, 351–366. [Google Scholar] [CrossRef]
- Hughes, M.J.; Hayes, D.J. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing. Remote. Sens. 2014, 6, 4907–4926. [Google Scholar] [CrossRef] [Green Version]
- Candra, D.S.; Phinn, S.; Scarth, P. Automated Cloud and Cloud-Shadow Masking for Landsat 8 Using Multitemporal Images in a Variety of Environments. Remote. Sens. 2019, 11, 2060. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal Characteristics of Tropical Convection. J. Clim. 1999, 12, 2397–2418. [Google Scholar] [CrossRef]
- Duarte, R.P.; Gomes, A.J. Real-time simulation of cumulus clouds through SkewT/LogP diagrams. Comput. Graph. 2017, 67, 103–114. [Google Scholar] [CrossRef]
- Pancel, L.; Köhl, M. Tropical Forestry Handbook; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- FAA. Pilot’s Handbook of Aeronautical Knowledge, Chapter 12: Weather Theory. 2020. Available online: https://www.faa.gov/ (accessed on 16 February 2021).
- Gillies, S. Rasterio: Geospatial Raster I/O for Python Programmers. 2018. Available online: https://github.com/mapbox/rasterio (accessed on 16 February 2021).
- Perry, M.T. Rasterstats. 2017. Available online: https://github.com/perrygeo/python-rasterstats/blob/master/docs/manual.rst (accessed on 4 November 2020).
- Gillies, S. Shapely: Manipulation and Analysis of Geometric Objects. 2007. Available online: https://github.com/Toblerity/Shapely (accessed on 16 February 2021).
- Jordahl, K.; den Bossche, J.V.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Farmer, C.; Cochran, M.; Gillies, S.; et al. Geopandas/Geopandas: V0.4.1. 2019. Available online: https://https://zenodo.org/record/2585849#.YC3BB3kRWUk (accessed on 16 February 2021).
- Schläpfer, D.; Richter, R.; Reinartz, P. Elevation-Dependent Removal of Cirrus Clouds in Satellite Imagery. Remote. Sens. 2020, 12, 494. [Google Scholar] [CrossRef] [Green Version]
- ESA. Recommendations of the Workshop Uncertainty in Remote Sensing. 2017. Available online: https://earth.esa.int/eogateway/events/workshop-on-uncertainties-in-remote-sensing (accessed on 16 February 2021).
- Benner, T.C.; Curry, J.A. Characteristics of small tropical cumulus clouds and their impact on the environment. J. Geophys. Res. Space Phys. 1998, 103, 28753–28767. [Google Scholar] [CrossRef]
- Zekoll, V.; Main-Knorn, M.; Alonso, K.; Louis, J.; Frantz, D.; Richter, R.; Pflug, B. Comparison of Masking Algorithms for Sentinel-2 Imagery. Remote. Sens. 2021, 13, 137. [Google Scholar] [CrossRef]
Band | Spatial Resolution (m) | S2A | S2B | ||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | ||
B1 | 60 | 442.7 | 21 | 442.2 | 21 |
B2 | 10 | 492.4 | 66 | 492.1 | 66 |
B3 | 10 | 559.8 | 36 | 559 | 36 |
B4 | 10 | 664.6 | 31 | 664.9 | 31 |
B5 | 20 | 704.1 | 15 | 703.8 | 16 |
B6 | 20 | 740.5 | 15 | 739.1 | 15 |
B7 | 20 | 782.8 | 20 | 779.7 | 20 |
B8 | 10 | 832.8 | 106 | 832.9 | 106 |
B8a | 20 | 864.7 | 21 | 864 | 22 |
B9 | 60 | 945.1 | 20 | 943.2 | 21 |
B10 | 60 | 1373.5 | 31 | 1376.9 | 30 |
B11 | 20 | 1613.7 | 91 | 1610.4 | 94 |
B12 | 20 | 2202.4 | 175 | 2185.7 | 185 |
Class | Number of Reference Spectra |
---|---|
Clouds | 18,547 |
Cloud Shadows | 17,610 |
Clear Pixels | 18,273 |
Features | Kernel | C | Gamma | Pr |
---|---|---|---|---|
B1 to B9 and B11 to B12 | RBF | 100 | 1 | 0.995 ±0.008 |
B1 to B9 and B11 to B12, NDVI | RBF | 200 | 1 | 0.995 ±0.008 |
B1 to B9 and B11 to B12, MNDWI | RBF | 50 | 1 | 0.995 ±0.009 |
B1 to B9 and B11 to B12, NDVI, MNDWI | RBF | 100 | 1 | 0.995 ±0.008 |
B1, B9, NDVI, and MNDWI | RBF | 1 | 1 | 0.976 ±0.005 |
Date | Platform | φa [degrees] | d/h [-] | hemp [m] |
---|---|---|---|---|
24 January 2019 | S2A | 321–328 | 0.61–0.68 | 1050 |
18 June 2019 | S2B | 212-223 | 0.39-0.47 | 1050 |
27 August 2019 | S2B | 248–260 | 0.25–0.33 | 800 |
5 December 2019 | S2B | 332–340 | 0.60–0.67 | 600 |
Date | Time | Ts [degrees] | Tdew [degrees] | hmet [m] |
---|---|---|---|---|
24 January 2019 | 10:29 a.m. | 30.8 | 24.2 | 806 |
18 June 2019 | 10:29 a.m. | 33.2 | 27.7 | 671 |
27 August 2019 | 10:00 a.m. | 32.2 | 27.2 | 610 |
5 December 2019 | 09:53 a.m. | 29.6 | 27.2 | 294 |
Neg Mining Pixels | Date | F Sen2Cor | F Current Approach | |||
---|---|---|---|---|---|---|
Shadow | High Prob. | Medium Prob. | Shadow | Clouds | ||
2916 | 24 January 2019 | 0 | 6 | 12 | 0 | 0 |
2947 | 18 June 2019 | 0 | 20 | 30 | 0 | 0 |
2667 | 27 August 2019 | 0 | 0 | 11 | 0 | 0 |
2916 | 5 December 2019 | 0 | 0 | 3 | 0 | 0 |
Neg Water Pixels | Date | F Sen2Cor | F Current Approach | |||
---|---|---|---|---|---|---|
Shadow | High Prob. | Medium Prob. | Shadow | Clouds | ||
2947 | 24 January 2019 | 0 | 3 | 14 | 0 | 0 |
2947 | 18 June 2019 | 0 | 0 | 70 | 0 | 0 |
2835 | 27 August 2019 | 200 | 4 | 35 | 170 | 0 |
2947 | 5 December 2019 | 128 | 0 | 29 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, E.; Jiang, J.; Lema, L.; Barnabé, P.; Giuliani, G.; Lacroix, P.; Pirard, E. Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 736. https://doi.org/10.3390/rs13040736
Ibrahim E, Jiang J, Lema L, Barnabé P, Giuliani G, Lacroix P, Pirard E. Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery. Remote Sensing. 2021; 13(4):736. https://doi.org/10.3390/rs13040736
Chicago/Turabian StyleIbrahim, Elsy, Jingyi Jiang, Luisa Lema, Pierre Barnabé, Gregory Giuliani, Pierre Lacroix, and Eric Pirard. 2021. "Cloud and Cloud-Shadow Detection for Applications in Mapping Small-Scale Mining in Colombia Using Sentinel-2 Imagery" Remote Sensing 13, no. 4: 736. https://doi.org/10.3390/rs13040736