Boundary-Aware Refined Network for Automatic Building Extraction in Very High-Resolution Urban Aerial Images
<p>Examples of segmentation error map for several existing state-of-the-art methods performed on the WHUaerial building dataset [<a href="#B21-remotesensing-13-00692" class="html-bibr">21</a>]. Column (<b>a</b>), original images. Column (<b>b</b>), reference labels. Columns (<b>c</b>–<b>f</b>), results obtained by U-Net, PSPNet, DeepLab-v3+ and MA-FCN, respectively. In (<b>b</b>–<b>f</b>), green, white and blue indicate building pixels, non-building pixels and misidentified building pixels, respectively.</p> "> Figure 2
<p>Overall structure of the proposed Boundary-Aware Refined Network (BARNet).</p> "> Figure 3
<p>Structure of the proposed gated-attention refined fusion unit.</p> "> Figure 4
<p>Architecture of the proposed denser atrous spatial pyramid pooling module.</p> "> Figure 5
<p>Principle of the proposed boundary-aware loss.</p> "> Figure 6
<p>Examples of the images and corresponding labels for the two employed datasets. (<b>a</b>) and (<b>b</b>) represent the WHU dataset and Potsdam dataset, respectively. The white regions in the two reference maps stand for buildings.</p> "> Figure 7
<p>Examples of building extraction results obtained by different methods on the WHU dataset. (<b>a</b>) Original image. (<b>b</b>) Ground-truth. (<b>c</b>) U-Net. (<b>d</b>) DeepLab-v3+. (<b>e</b>) DANet. (<b>f</b>) MA-FCN. (<b>g</b>) BARNet. Note, in Columns (<b>c</b>–<b>g</b>), green, blue and red indicate true-positive, false-negative and false-positive, respectively. The yellow rectangles in (<b>a</b>) are the selected regions for close-up inspection in <a href="#remotesensing-13-00692-f008" class="html-fig">Figure 8</a>.</p> "> Figure 8
<p>Close-up views of the results obtained by different methods on the WHU dataset. Images and results shown in (<b>a</b>–<b>g</b>) are the subset from the selected regions marked in <a href="#remotesensing-13-00692-f007" class="html-fig">Figure 7</a>a. (<b>a</b>) Original image. (<b>b</b>) Ground-truth. (<b>c</b>) U-Net. (<b>d</b>) DeepLab-v3+. (<b>e</b>) DANet. (<b>f</b>) MA-FCN. (<b>g</b>) BARNet.</p> "> Figure 9
<p>Examples of building extraction results obtained by different methods on the Potsdam dataset. (<b>a</b>) Original image. (<b>b</b>) Ground-truth. (<b>c</b>) U-Net. (<b>d</b>) DeepLab-v3+. (<b>e</b>) DANet. (<b>f</b>) MA-FCN. (<b>g</b>) BARNet. Note, in Columns (<b>c</b>–<b>g</b>), green, blue and red indicate true-positive, false-negative and false-positive, respectively. The yellow rectangles in (<b>a</b>) are the selected regions for close-up inspection in <a href="#remotesensing-13-00692-f010" class="html-fig">Figure 10</a>.</p> "> Figure 10
<p>Close-up views of the results obtained by different methods on the Potsdam dataset. Images and results shown in (<b>a</b>–<b>g</b>) are the subset from the selected regions marked in <a href="#remotesensing-13-00692-f009" class="html-fig">Figure 9</a>a. (<b>a</b>) Original image. (<b>b</b>) Ground-truth. (<b>c</b>) U-Net. (<b>d</b>) DeepLab-v3+. (<b>e</b>) DANet. (<b>f</b>) MA-FCN. (<b>g</b>) BARNet.</p> "> Figure 11
<p>Instance of a trimap and comparisons of boundary refinement. (<b>a</b>) Boundary trimap. (<b>b</b>) Mean IoU results for trimap experiments with a bandwidth of <math display="inline"><semantics> <mfenced separators="" open="{" close="}"> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>8</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>12</mn> </mfenced> </semantics></math>.</p> ">
Abstract
:1. Introduction
- (1)
- we develop the Gated-Attention Refined Fusion Unit (GARFU), which realizes a better fusion of cross-level features in the skip connection;
- (2)
- we propose a Denser Atrous Spatial Pyramid Pooling (DASPP) module to capture dense multi-scale building features; and
- (3)
- we design a boundary-enhanced loss that allows the models to pay attention to the boundary pixels.
2. Related Work
2.1. CNNs for Semantic Segmentation
2.2. Multi-Level Feature Fusion
2.3. Aggregation of the Multi-Scale Context
2.4. Boundary Refinement
3. Methodology
3.1. Model Overview
3.2. Gated-Attention Refined Fusion Unit
3.3. Denser Atrous Spatial Pyramid Pooling
3.4. Boundary-Aware Loss
3.5. Training Loss
4. Experiments and Results
4.1. Datasets
4.2. Experimental Settings
4.3. Comparison to State-Of-The-Art Studies
4.3.1. Visualization Results
4.3.2. Quantitative Comparisons
5. Discussion
5.1. Ablation Studies
5.1.1. Network Design Evaluation
5.1.2. Comparison with the Multi-Level Feature Fusion Strategy
5.1.3. Comparison with the Multi-Scale Context Scheme
5.1.4. Analysis of the Generality and Effectiveness of the BE Loss
5.2. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
FCN | Fully-Convolutional Network |
GARFU | Gated-Attention Refined Unit |
FPN | Feature Pyramid Network |
ASPP | Atrous Spatial Pyramid Pooling |
DASPP | Denser Atrous Spatial Pyramid Pooling |
BN | Batch Normalization |
ReLU | Rectified Linear Unit |
CASPB | Cascaded Atrous Spatial Pyramid Block |
CE | Cross-Entropy |
OHEM | Online Hard Example Mining |
ISPRS | International Society for Photogrammetry and Remote Sensing |
GPU | Graphics Processing Unit |
PPM | Pyramid Pooling Module |
DenseCRF | Dense Conditional Random Filed |
MS | Multi-Scale inference |
References
- Wang, Y.; Chen, C.; Ding, M.; Li, J. Real-time dense semantic labeling with dual-Path framework for high-resolution remote sensing image. Remote Sens. 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, D.; Kushwaha, N.; Samal, A.; Agarwal, R. Automatic building detection from high-resolution satellite images based on morphology and internal gray variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1767–1779. [Google Scholar] [CrossRef]
- Wang, X.; Li, P. Extraction of urban building damage using spectral, height and corner information from VHR satellite images and airborne LiDAR data. ISPRS-J. Photogramm. Remote Sens. 2020, 159, 322–336. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Zou, Z.; Xu, S.; He, X.; Chen, S. Automatic building extraction from LiDAR data fusion of point and grid-based features. ISPRS-J. Photogramm. Remote Sens. 2017, 130, 294–307. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Fraser, C.S. Automatic segmentation of raw LiDAR data for extraction of building roofs. Remote Sens. 2014, 6, 3716–3751. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Zhang, X.; Xin, Q.; Sun, Y.; Zhang, P. Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS-J. Photogramm. Remote Sens. 2019, 151, 91–105. [Google Scholar] [CrossRef]
- Awrangjeb, M.; Ravanbakhsh, M.; Fraser, C.S. Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS-J. Photogramm. Remote Sens. 2010, 65, 457–467. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Wang, S.; Ma, Y.; Chen, G.; Wang, B.; Shen, M.; Liu, W. Building detection from VHR remote sensing imagery based on the morphological building index. Remote Sens. 2018, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yuan, W.; Li, J.; Zhang, L. A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 654–668. [Google Scholar] [CrossRef]
- Zhai, W.; Shen, H.; Huang, C.; Pei, W. Fusion of polarimetric and texture information for urban building extraction from fully polarimetric SAR imagery. Remote Sens. Lett. 2016, 7, 31–40. [Google Scholar] [CrossRef]
- Qin, X.; He, S.; Yang, X.; Dehghan, M.; Qin, Q.; Martin, J. Accurate outline extraction of individual building from very high-resolution optical images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1775–1779. [Google Scholar] [CrossRef]
- Turker, M.; Koc-San, D. Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 58–69. [Google Scholar] [CrossRef]
- Inglada, J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS-J. Photogramm. Remote Sens. 2007, 62, 236–248. [Google Scholar] [CrossRef]
- Miao, Z.; Shi, W.; Gamba, P.; Li, Z. An object-based method for road network extraction in VHR satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4853–4862. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Xu, W.; Hu, Z.; Jia, H.; Luo, X.; Shao, D. GSCA-UNet: Towards Automatic Shadow Detection in Urban Aerial Imagery with Global-Spatial-Context Attention Module. Remote Sens. 2020, 12, 2864. [Google Scholar] [CrossRef]
- Wu, G.; Guo, Z.; Shi, X.; Chen, Q.; Xu, Y.; Shibasaki, R.; Shao, X. A boundary regulated network for accurate roof segmentation and outline extraction. Remote Sens. 2018, 10, 1195. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Luo, J.; Huang, B.; Hu, X.; Sun, Y.; Yang, Y.; Xu, N.; Zhou, N. DE-Net: Deep Encoding Network for Building Extraction from High-Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 2380. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Ji, S.; Wei, S.; Lu, M. A scale robust convolutional neural network for automatic building extraction from aerial and satellite imagery. Int. J. Remote Sens. 2019, 40, 3308–3322. [Google Scholar] [CrossRef]
- Wei, S.; Ji, S.; Lu, M. Toward automatic building footprint delineation from aerial images using cnn and regularization. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2178–2189. [Google Scholar] [CrossRef]
- Kang, W.; Xiang, Y.; Wang, F.; You, H. EU-Net: An Efficient Fully Convolutional Network for Building Extraction from Optical Remote Sensing Images. Remote Sens. 2019, 11, 2813. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Zhu, J.; Cao, Y.; Feng, D.; Hu, M.; Li, W.; Zhang, Y.; Fu, L. Refined Extraction Of Building Outlines From High-Resolution Remote Sensing Imagery Based on a Multifeature Convolutional Neural Network and Morphological Filtering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1842–1855. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–26 July 2017; pp. 2117–2125. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–20 June 2015; pp. 3431–3440. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Bisenet: Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 325–341. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Yang, M.; Yu, K.; Zhang, C.; Li, Z.; Yang, K. Denseaspp for semantic segmentation in street scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3684–3692. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar]
- Yuan, Y.; Chen, X.; Wang, J. Object-contextual representations for semantic segmentation. arXiv 2019, arXiv:1909.11065. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Yu, C.; Wang, J.; Peng, C.; Gao, C.; Yu, G.; Sang, N. Learning a discriminative feature network for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1857–1866. [Google Scholar]
- Takikawa, T.; Acuna, D.; Jampani, V.; Fidler, S. Gated-scnn: Gated shape cnns for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 5229–5238. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–20 June 2017; pp. 4681–4690. [Google Scholar]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1580–1589. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European conference on computer vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 630–645. [Google Scholar]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 275, 167–179. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Mobilenets, H.A. Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–20 June 2015; pp. 1026–1034. [Google Scholar]
- Da, K. A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv 2017, arXiv:1706.02677. [Google Scholar]
- Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Garcia, D.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.; et al. Mixed precision training. arXiv 2017, arXiv:1710.03740. [Google Scholar]
- Yang, H.; Wu, P.; Yao, X.; Wu, Y.; Wang, B.; Xu, Y. Building extraction in very high resolution imagery by dense-attention networks. Remote Sens. 2018, 10, 1768. [Google Scholar] [CrossRef] [Green Version]
Datasets | Methods | Precision (%) | Recall (%) | F (%) | IoU (%) |
---|---|---|---|---|---|
WHU | U-Net | 92.88 | 93.18 | 91.61 | 86.95 |
DeepLab-v3+ | 95.07 | 90.75 | 92.85 | 88.05 | |
DANet | 94.25 | 93.93 | 94.09 | 88.87 | |
MA-FCN (our implementation) | 94.20 | 94.47 | 94.34 | 89.21 | |
MA-FCN (overlap and vote) [23] | 95.20 | 95.10 | - | 90.70 | |
SiU-Net [21] | 93.80 | 93.90 | - | 88.40 | |
BARNet (ours) | 97.21 | 95.32 | 96.26 | 91.51 | |
Potsdam | U-Net | 93.90 | 93.61 | 93.75 | 86.70 |
DeepLab-v3+ | 95.70 | 93.95 | 94.81 | 88.21 | |
DANet | 95.63 | 94.30 | 94.97 | 88.19 | |
MA-FCN | 93.70 | 93.20 | 93.42 | 87.69 | |
DAN [52] | - | - | 92.56 | 90.56 | |
Wang et al. [1] | 94.90 | 96.50 | 95.70 | - | |
BARNet (ours) | 98.64 | 95.12 | 96.84 | 92.24 |
Baseline | ResNet-101 | GARFU | DASPP | CE Loss | BA Loss | OHEM | MS | IoU (%) |
---|---|---|---|---|---|---|---|---|
✔ | ✔ | 86.95 | ||||||
✔ | ✔ | ✔ | 88.44 (1.49↑) | |||||
✔ | ✔ | ✔ | ✔ | 89.16 (0.72↑) | ||||
✔ | ✔ | ✔ | ✔ | ✔ | 90.28 (1.12↑) | |||
✔ | ✔ | ✔ | ✔ | ✔ | 90.84 (0.56↑) | |||
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 91.37 (0.53↑) | ||
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 91.51 (0.14↑) |
Fusion Strategies | IoU (%) |
---|---|
GARFU (baseline) | 90.84 |
Addition | 89.94 (0.89↓) |
Concatenation | 90.06 (0.78↓) |
Methods | IoU (%) | Parameters (M) | FLOPs (G) |
---|---|---|---|
PPM | 89.79 | 22 | 619 |
ASPP | 90.34 | 15.1 | 503 |
Self-Attention | 90.42 | 10.5 | 619 |
Dual-Attention | 90.45 | 10.6 | 1110 |
DASPP (Ours) | 90.84 | 10.6 | 172 |
Methods | CE Loss | CE Loss + DenseCRF | CE Loss + BE Loss | IoU (%) |
---|---|---|---|---|
U-Net | ✔ | 86.95 | ||
U-Net | ✔ | 87.03 | ||
U-Net | ✔ | 87.76 | ||
BARNet (Ours) | ✔ | 90.28 | ||
BARNet (Ours) | ✔ | 90.39 | ||
BARNet (Ours) | ✔ | 90.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Xu, W.; Zhang, C.; Luo, X.; Jia, H. Boundary-Aware Refined Network for Automatic Building Extraction in Very High-Resolution Urban Aerial Images. Remote Sens. 2021, 13, 692. https://doi.org/10.3390/rs13040692
Jin Y, Xu W, Zhang C, Luo X, Jia H. Boundary-Aware Refined Network for Automatic Building Extraction in Very High-Resolution Urban Aerial Images. Remote Sensing. 2021; 13(4):692. https://doi.org/10.3390/rs13040692
Chicago/Turabian StyleJin, Yuwei, Wenbo Xu, Ce Zhang, Xin Luo, and Haitao Jia. 2021. "Boundary-Aware Refined Network for Automatic Building Extraction in Very High-Resolution Urban Aerial Images" Remote Sensing 13, no. 4: 692. https://doi.org/10.3390/rs13040692