Triple-Attention-Based Parallel Network for Hyperspectral Image Classification
"> Figure 1
<p>Various attention modules, including (<b>a</b>) channel-wise attention, (<b>b</b>) spectral-wise attention and (<b>c</b>) spatial-wise attention. <span class="html-italic">C</span>, <span class="html-italic">W</span>, <span class="html-italic">H</span> and <span class="html-italic">B</span> represent the number of channels, width, height and number of bands respectively. For easier understanding, weighted channels, weighted bands, and weighted pixels are represented by different colors. GAP denotes the global average pooling and FC denotes the fully connected layer. Conv represents the convolutional layer.</p> "> Figure 2
<p>Channel–spectral–spatial-attention parallel network. Each row and column represents the same subnetwork and the same convolution stage, respectively; VSRB represents the variable spectral residual block; CSSA represents the channel–spatial–spectral-attention module.</p> "> Figure 3
<p>Various CNN frameworks: (<b>a</b>) Serial network with cross-layer connectivity, (<b>b</b>) network with cross-layer connectivity and multi-scale context fusion, (<b>c</b>) common two-branch fusion network in HSI classification, and (<b>d</b>) example of the proposed parallel network with two subnetworks (SN1, SN2).</p> "> Figure 4
<p>The variable spectral residual block used for replacing the convolution operation in each subnetwork. BN represents the batch normalization, and Conv denotes the convolutional layer.</p> "> Figure 5
<p>The triple-attention module, involving in channel-, spectral- and spatial- attention (CSSA). GAP, FC, K, S represents global average pooling, the fully connected layer, the kernel size and the stride, respectively. The triple-attention module(CSSA) has two inputs: (1) the feature maps at the highest level of the preceding subnetwork, and (2) the corresponding low-level feature maps of the same stage. The total weight is generated by aggregating the three types of attention modules.</p> "> Figure 6
<p>Training-test set splits: (<b>a</b>) random partitioning blocks, (<b>b</b>) training blocks, (<b>c</b>) leaked image, (<b>d</b>) remaining image, (<b>e</b>) validation blocks, (<b>f</b>) test image.</p> "> Figure 7
<p>Training pixels in (<b>a</b>) Salinas Valley dataset, (<b>b</b>) Pavia University dataset, (<b>c</b>) Indian Pines dataset. Subfigure 0 in each dataset is the ground truth for the corresponding dataset. The other subfigures represent the training pixels for different folds.</p> "> Figure 8
<p>SerialNet and ParallelNet. VSRB represents the variable spectral residual block.</p> "> Figure 9
<p>Classification maps by different models for Salinas Valley: (<b>a</b>) false color image, (<b>b</b>) ground truth, (<b>c</b>) SS3FCN, (<b>d</b>) SerialNet, (<b>e</b>) ParallelNet, and (<b>f</b>) TAP-Net.</p> "> Figure 10
<p>Classification maps of different models for Pavia University: (<b>a</b>) false color image, (<b>b</b>) ground truth, (<b>c</b>) SS3FCN, (<b>d</b>) SerialNet, (<b>e</b>) ParallelNet, and (<b>f</b>) TAP-Net.</p> "> Figure 11
<p>Classification maps of different models for Indian Pines: (<b>a</b>) false color image, (<b>b</b>) ground truth, (<b>c</b>) SS3FCN, (<b>d</b>) SerialNet, (<b>e</b>) ParallelNet, and (<b>f</b>) TAP-Net.</p> "> Figure 12
<p>Classification results on none-leaked and leaked datasets for (<b>a</b>) Salinas Valley, (<b>b</b>) Pavia University, and (<b>c</b>) Indian Pines.</p> "> Figure 13
<p>Influence of the number of labeled pixels in each block: (<b>a</b>) Salinas Valley, (<b>b</b>) Pavia University, and (<b>c</b>) Indian Pines.</p> ">
Abstract
:1. Introduction
- We propose a FCN-based parallel network as our baseline. It is composed of four parallel subnetworks with the same spatial resolution, and the high-level feature maps of any subnetwork are reused by anti-cross-layer connectivity to refine the low-level feature maps of the succeeding subnetwork.
- We apply a triple-attention mechanism, consisting of channel-wise, spectral-wise, and spatial-wise attention, between different subnetworks in a parallel network. The attention mechanism filters the feature maps of any subnetwork to obtain stronger spectral–spatial information and more important feature channels as input for the succeeding subnetwork.
- We introduce a novel partitioning method, which can be the gold standard for HSI classification. It not only allows designing a framework without information leakage, but also suits actual application scenarios.
2. Proposed Methods
2.1. The Parallel Network and Anti-Cross-Layer Connectivity
2.2. Variable Spectral Residual Block
2.3. Triplet Attention Mechanism
2.3.1. Channel-Wise Attention Module
2.3.2. Spectral-Wise Attention Module
2.3.3. Spatial-Wise Attention Module
2.3.4. Aggregation of Attention Modules
3. Experiment Setup and Results
3.1. Data Partition
3.2. Evaluation Matrices
3.3. Experimental Dataset
3.4. Parameter Setting and Network Configuration
4. Classification Result
4.1. Results on Salinas Valley
4.2. Results on Pavia University
4.3. Results on Indian Pines
5. Analysis and Discussion
5.1. Effect of Information Leakage
5.2. Effect of Block-Patch Size
5.3. Effect of the Number of Labeled Pixels in Each Block
5.4. Advantages and Limitations
5.4.1. Impact of the Attention Module
5.4.2. Impact of Data Splits and Augmentation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, X.; Fu, A.; Wang, J.; Wang, H.; Yin, B. Hyperspectral image classification based on deep deconvolution network with skip architecture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4781–4791. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Cope, M.P.; Allen, J.S.; Lytle, B.A. Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Van Ruitenbeek, F.; van der Werff, H.; Bakker, W.; van der Meer, F.; Hein, K. Measuring rock microstructure in hyperspectral mineral maps. Remote Sens. Environ. 2019, 220, 94–109. [Google Scholar] [CrossRef]
- Wei, L.; Xiao, X.; Wang, Y.; Zhuang, X.; Wang, J. Research on the shortwave infrared hyperspectral imaging technology based on Integrated Stepwise filter. Infrared Phys. Technol. 2017, 86, 90–97. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.W. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism. Remote Sens. 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Zhou, M.; Castrodad, A.; Sapiro, G.; Carin, L. Dictionary learning for noisy and incomplete hyperspectral images. SIAM J. Imaging Sci. 2012, 5, 33–56. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial–spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral–spatial classification of hyperspectral images. Proc. IEEE 2012, 101, 652–675. [Google Scholar] [CrossRef] [Green Version]
- Zhong, P.; Gong, Z. A hybrid DBN and CRF model for spectral–spatial classification of hyperspectral images. Stat. Optim. Inf. Comput. 2017, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised spectral–spatial hyperspectral image classification with weighted Markov random fields. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1490–1503. [Google Scholar] [CrossRef]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New frontiers in spectral–spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Fang, X.; Zou, L.; Li, J.; Sun, L.; Ling, Z.H. Channel adversarial training for cross-channel text-independent speaker recognition. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6221–6225. [Google Scholar]
- Liu, H.; Du, F.; Tang, X.; Liu, H.; Yu, Z. Network Architecture Reasoning Via Deep Deterministic Policy Gradient. In Proceedings of the 2020 IEEE International Conference on Multimedia and Expo (ICME), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Chen, X.; Li, Y.; Hu, R.; Zhang, X.; Chen, X. Hand Gesture Recognition based on Surface Electromyography using Convolutional Neural Network with Transfer Learning Method. IEEE J. Biomed. Health Inform. 2020. [Google Scholar] [CrossRef]
- Wang, D.; Mao, K.; Ng, G.W. Convolutional neural networks and multimodal fusion for text aided image classification. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–7. [Google Scholar]
- Ma, W.; Yang, Q.; Wu, Y.; Zhao, W.; Zhang, X. Double-branch multi-attention mechanism network for hyperspectral image classification. Remote Sens. 2019, 11, 1307. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W.; Xiao, L. A Multi-Scale Wavelet 3D-CNN for Hyperspectral Image Super-Resolution. Remote Sens. 2019, 11, 1557. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Zheng, J.; Miao, C.; Mckeown, M.J.; Wang, Z.J. 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access 2017, 5, 23626–23636. [Google Scholar] [CrossRef]
- Wang, C.; Ma, N.; Ming, Y.; Wang, Q.; Xia, J. Classification of hyperspectral imagery with a 3D convolutional neural network and JM distance. Adv. Space Res. 2019, 64, 886–899. [Google Scholar] [CrossRef]
- Pan, B.; Xu, X.; Shi, Z.; Zhang, N.; Luo, H.; Lan, X. DSSNet: A Simple Dilated Semantic Segmentation Network for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. MugNet: Deep learning for hyperspectral image classification using limited samples. ISPRS J. Photogramm. Remote Sens. 2018, 145, 108–119. [Google Scholar] [CrossRef]
- Fang, X.; Gao, T.; Zou, L.; Ling, Z. Bidirectional Attention for Text-Dependent Speaker Verification. Sensors 2020, 20, 6784. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Chen, F.; Jing, X.Y.; Hu, C.H.; Ge, Q.; Ji, Y. Dynamic attention network for semantic segmentation. Neurocomputing 2020, 384, 182–191. [Google Scholar] [CrossRef]
- Tao, W.; Li, C.; Song, R.; Cheng, J.; Liu, Y.; Wan, F.; Chen, X. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Trans. Affect. Comput. 2020. [Google Scholar] [CrossRef]
- Ribalta Lorenzo, P.; Tulczyjew, L.; Marcinkiewicz, M.; Nalepa, J. Hyperspectral Band Selection Using Attention-Based Convolutional Neural Networks. IEEE Access 2020, 8, 42384–42403. [Google Scholar] [CrossRef]
- Pan, E.; Ma, Y.; Mei, X.; Dai, X.; Fan, F.; Tian, X.; Ma, J. Spectral-Spatial Classification of Hyperspectral Image based on a Joint Attention Network. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 413–416. [Google Scholar]
- Zou, L.; Zhu, X.; Wu, C.; Liu, Y.; Qu, L. Spectral–Spatial Exploration for Hyperspectral Image Classification via the Fusion of Fully Convolutional Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 659–674. [Google Scholar] [CrossRef]
- Nalepa, J.; Myller, M.; Kawulok, M. Validating hyperspectral image segmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Nalepa, J.; Myller, M.; Kawulok, M. Training-and test-time data augmentation for hyperspectral image segmentation. IEEE Geosci. Remote Sens. Lett. 2019, 17, 292–296. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep high-resolution representation learning for human pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5693–5703. [Google Scholar]
- Li, H.; Xiong, P.; Fan, H.; Sun, J. Deep Feature Aggregation for Real-Time Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- McNeely-White, D.; Beveridge, J.R.; Draper, B.A. Inception and ResNet features are (almost) equivalent. Cogn. Syst. Res. 2020, 59, 312–318. [Google Scholar] [CrossRef]
- Wang, T.; Wang, G.; Tan, K.E.; Tan, D. Hyperspectral Image Classification via Pyramid Graph Reasoning. In Advances in Visual Computing; Bebis, G., Yin, Z., Kim, E., Bender, J., Subr, K., Kwon, B.C., Zhao, J., Kalkofen, D., Baciu, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 707–718. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zeng, Z.; Xie, W.; Zhang, Y.; Lu, Y. RIC-Unet: An improved neural network based on Unet for nuclei segmentation in histology images. IEEE Access 2019, 7, 21420–21428. [Google Scholar] [CrossRef]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef]
- Ren, F.; Liu, W.; Wu, G. Feature Reuse Residual Networks for Insect Pest Recognition. IEEE Access 2019, 7, 122758–122768. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Xi, J.; Yuan, X.; Wang, M.; Li, A.; Li, X.; Huang, Q. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication. Bioinformatics 2020, 36, 1855–1863. [Google Scholar] [CrossRef]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 3146–3154. [Google Scholar]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral–spatial attention networks for hyperspectral image classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral–Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3232–3245. [Google Scholar] [CrossRef]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066. [Google Scholar] [CrossRef]
Class | Total | Train | Val | Leaked | Test | Train-Ratio (%) |
---|---|---|---|---|---|---|
C1 | 2009 | 77.6 | 128.4 | 605.6 | 1197.4 | 3.86 |
C2 | 3726 | 137.6 | 90.4 | 1118.8 | 2379.2 | 3.69 |
C3 | 1976 | 77.6 | 119 | 588.8 | 1190.6 | 3.93 |
C4 | 1394 | 52.8 | 49 | 333.8 | 958.4 | 3.79 |
C5 | 2678 | 102 | 118.6 | 737 | 1720.4 | 3.81 |
C6 | 3959 | 156.4 | 147.8 | 1181.4 | 2473.4 | 3.95 |
C7 | 3579 | 142.8 | 122.8 | 1089.6 | 2223.8 | 3.99 |
C8 | 11,271 | 407.8 | 346 | 3509.6 | 7007.6 | 3.62 |
C9 | 6203 | 225.8 | 275 | 1858.2 | 3844 | 3.64 |
C10 | 3278 | 116.6 | 129 | 946 | 2086.4 | 3.56 |
C11 | 1068 | 43.4 | 43.6 | 274.6 | 706.4 | 4.06 |
C12 | 1927 | 75.2 | 116 | 575.6 | 1160.2 | 3.90 |
C13 | 916 | 36.2 | 40.8 | 208.2 | 630.8 | 3.95 |
C14 | 1070 | 44.2 | 47 | 290 | 688.8 | 4.13 |
C15 | 7268 | 252.4 | 247.2 | 2183.2 | 4585.2 | 3.47 |
C16 | 1807 | 68.8 | 41.6 | 571 | 1125.6 | 3.81 |
Total | 54,129 | 2017.2 | 2062.2 | 16,071.4 | 33,978.2 | 3.73 |
Class | Total | Train | Val | Leaked | Test | Train-Ratio (%) |
---|---|---|---|---|---|---|
C1 | 6631 | 457 | 381.6 | 1371.2 | 4421.2 | 6.89 |
C2 | 18,649 | 1116.8 | 1332.4 | 6648.6 | 9551.2 | 5.99 |
C3 | 2099 | 139.8 | 133.4 | 421.8 | 1404 | 6.66 |
C4 | 3064 | 195 | 99.2 | 254.6 | 2515.2 | 6.36 |
C5 | 1345 | 91.4 | 97.6 | 270.6 | 885.4 | 6.89 |
C6 | 5029 | 299 | 366.4 | 1922 | 2441.6 | 5.95 |
C7 | 1330 | 86.2 | 121.2 | 386.8 | 735.8 | 6.48 |
C8 | 3682 | 272.6 | 164.2 | 455.2 | 2790 | 7.4 |
C9 | 947 | 63.6 | 62.6 | 91.2 | 729.6 | 6.72 |
Total | 42,776 | 2721.4 | 2758.6 | 11,822 | 25,474 | 6.36 |
Class | Total | Train | Val | Leaked | Test | Train-Ratio (%) |
---|---|---|---|---|---|---|
C1 | 46 | 7.6 | 7.8 | 16.6 | 14 | 16.52 |
C2 | 1428 | 159.6 | 164 | 441.4 | 663 | 11.18 |
C3 | 830 | 97.6 | 91 | 262.2 | 379.2 | 11.76 |
C4 | 237 | 29.4 | 24.8 | 72.2 | 110.6 | 12.41 |
C5 | 483 | 56.2 | 52.2 | 161.4 | 213.2 | 11.64 |
C6 | 730 | 87 | 74 | 220.8 | 348.2 | 11.93 |
C7 | 28 | 7.2 | 8.6 | 8.4 | 3.8 | 25.71 |
C8 | 478 | 56.8 | 55.2 | 163.8 | 202.2 | 11.88 |
C9 | 20 | 4.6 | 3.4 | 6.6 | 5.4 | 23 |
C10 | 972 | 122.8 | 123.8 | 330.6 | 394.8 | 12.63 |
C11 | 2455 | 259.2 | 245.6 | 810.8 | 1139.4 | 10.56 |
C12 | 593 | 76.4 | 63.6 | 192.4 | 260.6 | 12.88 |
C13 | 205 | 26.6 | 31.4 | 62 | 85 | 12.98 |
C14 | 1265 | 146 | 134.6 | 427.2 | 557.2 | 11.54 |
C15 | 386 | 39.6 | 51 | 108.6 | 186.8 | 10.26 |
C16 | 93 | 11.2 | 13.4 | 33.4 | 35 | 12.04 |
Total | 10,249 | 1187.8 | 1144.4 | 3318.4 | 4598.4 | 11.59 |
Stage | Stage0 | Stage1 | Stage2 | Stage3 | |
---|---|---|---|---|---|
Sub-Network3: | Kernel Size | / | / | / | 3×3×3 |
Feature Size | / | / | / | 10 × 10 ×24 × 128 | |
Sub-Network2: | Kernel Size | / | / | 3×3×3 | 1×1×3 |
Feature Size | / | / | 10×10×50×64 | 10×10×24×128 | |
Sub-Network1: | Kernel Size | / | 3×3×3 | 1×1×3 | 1×1×3 |
Feature Size | / | 10×10×100×64 | 10×10×50×64 | 10×10×24×128 | |
Sub-Network0: | Kernel Size | 3×3×3 (Input) | 1×1×3 | 1×1×3 | 1×1×3 |
Feature Size | 10×10×204×1 | 10×10×100×64 | 10×10×50×64 | 10×10×24×128 | |
Stage | Stage4 | Stage5 | Stage6 | ||
Sub-Network3: | Kernel Size | 1×1×3 | 1×1×3 | 1×1×3 (Output) | |
Feature Size | 10×10×12×128 | 10×10×6×256 | 10×10×3×256 | ||
Sub-Network2: | Kernel Size | 1×1×3 | 1×1×3 | / | |
Feature Size | 10×10×12×128 | 10×10×6×256 | / | ||
Sub-Network1: | Kernel Size | 1×1×3 | / | / | |
Feature Size | 10×10×12×128 | / | / | ||
Sub-Network0: | Kernel Size | / | / | / | |
Feature Size | / | / | / |
Class | Method | |||||||
---|---|---|---|---|---|---|---|---|
VHIS | DA-VHIS | AutoCNN | SS3FCN | SerialNet | ParallelNet | TAP-Net | ||
C1 | 85.91 | 96.36 | 96.75 | 92.36 | 97.88 | 99.36 | ||
C2 | 73.88 | 94.71 | 99.26 | 92.58 | 99.68 | 97.58 | ||
C3 | 33.72 | 49.95 | 79.46 | 66.35 | 90.79 | 97.78 | ||
C4 | 65.92 | 79.62 | 99.09 | 98.13 | 98.91 | 97.78 | ||
C5 | 46.42 | 64.3 | 97.21 | 95.63 | 95.34 | 94.46 | ||
C6 | 79.63 | 79.89 | 99.68 | 99.30 | 99.31 | 99.27 | ||
C7 | 73.59 | 79.62 | 99.35 | 99.43 | 99.26 | 99.43 | ||
C8 | 72.16 | 74.54 | 75.82 | 69.27 | 81.83 | 84.07 | ||
C9 | 71.87 | 96.1 | 99.05 | 99.67 | 96.84 | 98.07 | ||
C10 | 73.11 | 87.28 | 87.54 | 84.07 | 86.78 | 89.60 | ||
C11 | 72.51 | 73.08 | 89.15 | 85.31 | 73.09 | 95.38 | ||
C12 | 71.06 | 98.25 | 96.99 | 97.98 | 98.30 | 98.28 | ||
C13 | 75.80 | 97.67 | 98.36 | 98.45 | 97.22 | 97.58 | ||
C14 | 72.04 | 88.07 | 90.61 | 87.32 | 93.12 | 96.01 | ||
C15 | 45.03 | 62.92 | 63.47 | 52.31 | 50.59 | 58.84 | ||
C16 | 22.54 | 45.39 | 89.26 | 59.97 | 91.14 | 86.56 | ||
OA | 64.20 | 77.52 | 87.15 | 81.32 | 86.66 | 88.94 | 90.31 ± 1.27 | |
AA | 64.70 | 79.24 | 91.32 | 86.13 | 90.63 | 92.73 | 93.18 ± 1.27 | |
Kappa | / | 0.749 | 0.857 | / | 0.818 | 0.846 | 0.881 ± 0.03 |
Class | Method | |||||||
---|---|---|---|---|---|---|---|---|
VHIS | DA-VHIS | AutoCNN | SS3FCN | SerialNet | ParallelNet | TAP-Net | ||
C1 | 93.40 | 93.42 | 83.40 | 97.48 | 92.89 | 94.29 | ||
C2 | 86.20 | 86.52 | 93.32 | 90.86 | 95.40 | 93.97 | ||
C3 | 47.58 | 46.88 | 61.52 | 58.75 | 61.35 | 69.81 | ||
C4 | 86.89 | 92.21 | 78.86 | 84.81 | 81.68 | 85.31 | ||
C5 | 59.81 | 59.74 | 98.25 | 94.82 | 99.41 | 99.50 | ||
C6 | 27.14 | 27.68 | 73.34 | 23.59 | 56.58 | 71.24 | ||
C7 | 0 | 0 | 64.56 | 61.61 | 32.51 | 50.97 | ||
C8 | 78.46 | 78.32 | 76.86 | 88.84 | 69.66 | 73.52 | ||
C9 | 79.27 | 79.60 | 97.69 | 88.68 | 99.40 | 92.44 | ||
OA | 73.26 | 73.84 | 84.63 | 79.89 | 83.46 | 86.30 | 91.64 ± 1.08 | |
AA | 62.08 | 62.71 | 80.87 | 76.60 | 76.54 | 82.01 | 87.45 ± 3.09 | |
Kappa | / | 0.631 | 0.800 | / | 0.851 | 0.866 | 0.892 ± 0.02 |
Class | Method | |||||||
---|---|---|---|---|---|---|---|---|
VHIS | DA-VHIS | AutoCNN | SS3FCN | SerialNet | ParallelNet | TAP-Net | ||
C1 | 17.68 | 15.89 | 19.58 | 40.4 | 38.23 | 13.30 | ||
C2 | 56.89 | 70.41 | 60.16 | 77.89 | 57.8 | 70.86 | ||
C3 | 51.55 | 61.44 | 44.12 | 60.74 | 45.02 | 60.08 | ||
C4 | 36.27 | 42.28 | 25.35 | 11.8 | 44.1 | 53.67 | ||
C5 | 69.02 | 73.02 | 77.80 | 67.5 | 69.39 | 64.97 | ||
C6 | 92.35 | 92.13 | 90.99 | 91.95 | 92.16 | 89.06 | ||
C7 | 0 | 0 | 35.63 | 20.14 | 21.00 | 93.33 | ||
C8 | 86.95 | 86.44 | 95.87 | 81.71 | 96.77 | 98.49 | ||
C9 | 19.55 | 21.28 | 5.31 | 31.67 | 16.67 | 86.17 | ||
C10 | 60.05 | 67.47 | 55.93 | 78.15 | 64.26 | 81.34 | ||
C11 | 74.05 | 65.24 | 68.73 | 69.32 | 73.12 | 75.90 | ||
C12 | 43.71 | 49.56 | 36.96 | 40.81 | 46.97 | 71.70 | ||
C13 | 94.15 | 96.01 | 87.33 | 93.43 | 94.28 | 98.15 | ||
C14 | 91.18 | 92.68 | 84.90 | 91.77 | 91.72 | 90.04 | ||
C15 | 43.39 | 52.79 | 39.02 | 37.93 | 45.17 | 38.52 | ||
C16 | 45.04 | 44.78 | 48.02 | 75.19 | 80.79 | 80.54 | ||
OA | 67.11 | 69.49 | 65.35 | 71.47 | 69.47 | 76.59 | 81.35 ± 1.53 | |
AA | 55.11 | 58.15 | 54.73 | 60.65 | 61.09 | 73.51 | 78.85 ± 3.18 | |
Kappa | / | 0.653 | 0.600 | / | 0.695 | 0.730 | 0.787 ± 0.02 |
(a) Salinas Valley | ||||||
---|---|---|---|---|---|---|
Block_Patch | 6_4 | 8_6 | 10_8 | 12_10 | 14_12 | |
Accuracy (%) | OA | 88.77 | 89.1 | 90.31 | 89.47 | 86.39 |
AA | 91.9 | 93.06 | 93.18 | 93.77 | 89.4 | |
(b) Pavia University | ||||||
Block_Patch | 6_4 | 8_6 | 10_8 | 12_10 | 14_12 | |
Accuracy (%) | OA | 88.42 | 89.41 | 91.64 | 86.38 | 83.32 |
AA | 84.1 | 84.75 | 87.45 | 80.72 | 77.05 | |
(c) Indian Pines | ||||||
Block_Patch | 2_1 | 4_2 | 6_4 | 8_6 | 10_8 | |
Accuracy (%) | OA | 74.21 | 76.33 | 81.35 | 79.18 | / |
AA | 68.52 | 70.64 | 78.85 | 65.38 | / |
Class | Method | |||
---|---|---|---|---|
ParallelNet | ParallelNet-SS | ParallelNet-CS | TAP-Net | |
C1 | 95.67 ± 1.43 | |||
C2 | 98.25 ± 1.69 | |||
C3 | 85.48 ± 15.35 | |||
C4 | 94.23 ± 1.38 | |||
C5 | 99.70 ± 0.26 | |||
C6 | 84.17 ± 10.26 | |||
C7 | 67.68 ± 19.86 | |||
C8 | 83.60 ± 7.42 | |||
C9 | 99.33 ± 0.44 | |||
OA | 91.64 ± 1.08 | |||
AA | 87.45 ± 3.09 | |||
Kappa | 0.846 ±0.01 | 0.857 ± 0.05 | 0.879 ± 0.02 | 0.892 ± 0.02 |
ParallelNet | ParallelNet-SS | ParallelNet-CS | TAP-Net | |
---|---|---|---|---|
SerialNet | 0.007 | |||
ParallelNet | 0.018 | 0.025 | 0.005 | |
ParallelNet-SS | 0.912 | 0.028 | ||
ParallelNet-CS | 0.016 |
Salinas Valley | Pavia University | Indian Pines | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OA | AA | Kappa | OA | AA | Kappa | OA | AA | Kappa | ||
Data Splits | VHIS-VHIS | 64.2 | 64.7 | / | 73.26 | 62.08 | / | 67.11 | 55.11 | / |
VHIS-TAP | 69.91 | 71.93 | 0.666 | 73.60 | 63.14 | 0.645 | 70.91 | 59.24 | 0.668 | |
TAP-VHIS | 85.57 | 89.04 | 0.850 | 84.60 | 81.72 | 0.805 | 57.61 | 53.15 | 0.507 | |
TAP-TAP | 90.31 | 93.18 | 0.881 | 91.64 | 87.45 | 0.892 | 81.35 | 78.85 | 0.787 | |
Data augmentation | DA-VHIS | 77.52 | 79.24 | 0.749 | 73.84 | 62.71 | 0.631 | 69.49 | 58.15 | 0.653 |
TAP(DA) | 85.19 | 89.32 | 0.834 | 84.08 | 76.71 | 0.8 | 74.36 | 68.38 | 0.707 | |
TAP(NoDA) | 90.31 | 93.18 | 0.881 | 91.64 | 87.45 | 0.892 | 81.35 | 78.85 | 0.787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Zhu, X.; Zheng, J.; Zou, L. Triple-Attention-Based Parallel Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 324. https://doi.org/10.3390/rs13020324
Qu L, Zhu X, Zheng J, Zou L. Triple-Attention-Based Parallel Network for Hyperspectral Image Classification. Remote Sensing. 2021; 13(2):324. https://doi.org/10.3390/rs13020324
Chicago/Turabian StyleQu, Lei, Xingliang Zhu, Jiannan Zheng, and Liang Zou. 2021. "Triple-Attention-Based Parallel Network for Hyperspectral Image Classification" Remote Sensing 13, no. 2: 324. https://doi.org/10.3390/rs13020324