Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change
<p>Land cover types on the Tibetan Plateau classed in 2018 under the International Geosphere–Biosphere Program (IGBP) classification scheme and the division of climate zones.</p> "> Figure 2
<p>Interannual variations of the difference between N (number of pixels) and Nmin (minimum N) during the period 2001–2018 for each land cover type. The N−Nmin indicates the relative portion of different land cover types for pixels that have changed during the period.</p> "> Figure 3
<p>Interannual variations of the coverage of different land cover types during the period 2001–2018. The Y axis scaling of (<b>a</b>,<b>b</b>,<b>d</b>,<b>f</b>,<b>k</b>,<b>l</b>) is N × 10<sup>5</sup>; and the Y axis scaling of (<b>c</b>,<b>e</b>,<b>i</b>) is N × 10<sup>4</sup>, while it is N × 10<sup>6</sup> for (<b>g</b>), but N × 10<sup>3</sup> for (<b>h</b>,<b>j</b>).</p> "> Figure 4
<p>Vegetation expansion in four climate zones (arid, semi-arid, semi-humid, and humid) during the different subperiods between 2001 and 2018. The different colors indicate the period of vegetation expansion. For example, red labels the land cover change from non-vegetated land to vegetated land during the period 2001–2005. The insert pie chart shows the portion of each subperiod.</p> "> Figure 5
<p>Frequency distribution of vegetation expansion along climate and elevation gradients for the different subperiod from 2001 to 2018. The subfigures indicate distribution of vegetation expansion during different subperiods along Tem (<b>a</b>–<b>c</b>), Pre (<b>d</b>–<b>f</b>), Rad (<b>g</b>–<b>i</b>) and elevation (<b>j</b>–<b>l</b>) gradients in different climate zones.</p> "> Figure 6
<p>Trend of vegetation expansion in climate (<b>a</b>, Tem; <b>c</b>, Pre; <b>e</b>, Rad) and geography (<b>b</b>, longitude; <b>d</b>, latitude; <b>f</b>, elevation) on the TP during the period 2001–2018. Each colored point indicates the mean value of the multi-year averaged climatic variables/geographic parameters of all the pixels detected to be vegetation expansion areas in the corresponding year. The vertical black line shows the standard deviation. The dashed line indicates the linear trend of the mean value over time and R is the correlation coefficient with significance labelled with * and ** for the 0.05 and 0.01 levels, respectively.</p> "> Figure 7
<p>Trend of vegetation expansion in the climate (<b>a</b>–<b>c</b>, Tem; <b>d</b>–<b>f</b>, Pre; <b>g</b>–<b>i</b>, Rad) in different climate zones during the period 2001–2018. Each colored point indicates the mean value of the multi-year averaged climatic variables of all the pixels detected to be vegetation expansion areas in the corresponding year. The vertical black line shows the standard deviation. The dashed line indicates the linear trend of the mean value over time and R is the correlation coefficient with significance labelled with * and ** for the 0.05 and 0.01 levels, respectively.</p> "> Figure 8
<p>Trend of vegetation expansion in geography (<b>a</b>–<b>c</b>, longitude; <b>d</b>–<b>f</b>, latitude; <b>g</b>–<b>i</b>, elevation) in different climate zones during the period 2001–2018. Each colored point indicates the mean value of the geographic parameters of all the pixels detected to be vegetation expansion areas in the corresponding year. The vertical black line shows the standard deviation. The dashed line indicates the linear trend of the mean value over time and R is the correlation coefficient with significance labelled with * and ** for the 0.05 and 0.01 levels, respectively.</p> "> Figure 9
<p>Linear regressions between the vegetation expansion rate and the climate variables in the different climate zones during the period 2001–2018. <b>a</b>–<b>c</b>, linear regressions between vegetation expansion rate in the arid zone and growing season air temperature (GST), growing season precipitation (GSP) and growing season radiation (GSR), respectively; <b>d</b>–<b>f</b>, as <b>a</b>–<b>c</b> but in the semi-arid zone; <b>g</b>–<b>i</b>, as <b>a</b>–<b>c</b> but in the semi-humid zone. The dashed line indicates the linear fitting and <span class="html-italic">R</span> is the Pearson correlation coefficients with significance labelled with + and * denoting the significance at the levels of 0.1 and 0.05, respectively.</p> "> Figure A1
<p>Flow chart of the method and design of this study.</p> "> Figure A2
<p>Interannual variations of the growing season temperature and precipitation over the semi-humid zone on the TP during the period 2001–2018.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Cover Dataset
2.3. Gridded Climate and Elevation Datasets
2.4. Definition of Vegetation Expansion
2.5. Statistical Analysis
3. Results
3.1. Land Cover Change on the TP
3.2. Vegetation Expansion on the TP
3.3. Vegetation Expansion in Climate and Geography
3.4. Temporal Relationship between Vegetation Expansion Rate and Climate
4. Discussion
4.1. Accuracy of the MODIS Land Cover Data
4.2. Land Cover Change on the TP
4.3. Vegetation Expansion under Climate Change
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
-NF | -DF | -MF | -SL | -OF | -GL | -WE | -CL | -SI | -BA | WB | |
---|---|---|---|---|---|---|---|---|---|---|---|
NF- | 12,976 | 13,961 | 2812 | ||||||||
EF- | 2862 | 1179 | |||||||||
DF- | 2123 | 4860 | 6418 | 1484 | |||||||
MF- | 19,559 | 17,267 | 2644 | ||||||||
SL- | 6219 | 2486 | |||||||||
OF- | 16,017 | 2371 | 15,438 | 27,719 | |||||||
GL- | 2026 | 1374 | 1923 | 12,208 | 73,600 | 1330 | 3489 | 3614 | 100,699 | ||
WL- | 1759 | ||||||||||
CL- | 10,527 | ||||||||||
SI- | 3461 | 17,865 | |||||||||
BA- | 5196 | 232,607 | 33,173 | 13,588 | |||||||
WB- | 3627 |
Climate Variable | Climate Zone | Model Type | Equation (x–Climate; y–VER) | SE | F Value | R2 | p Value | AIC |
---|---|---|---|---|---|---|---|---|
GST | Arid | Linear | y = a × x + b | 0.17 | 2.15 | 0.06 | 0.16 | −8.04 |
Quadratic | y = a × x2 + bx + c | 0.15 | 4.80 | 0.39 | 0.03 | −12.67 | ||
Natural log | y = a × ln(x) + b | 0.17 | 2.69 | 0.14 | 0.12 | −8.56 | ||
Exponential | y = a × exp(b × x) + c | 0.15 | 4.06 | 0.35 | 0.04 | −11.55 | ||
Semi-arid | Linear | y = a × x + b | 0.01 | 0.37 | 0.02 | 0.55 | −107.34 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 1.33 | 0.15 | 0.29 | −107.87 | ||
Natural log | y = a × ln(x) + b | 0.01 | 0.30 | 0.02 | 0.59 | −107.26 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc | ||
Semi-humid | Linear | y = a × x + b | 0.01 | 3.24 | 0.17 | 0.09 | −104.45 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 2.45 | 0.25 | 0.12 | −104.21 | ||
Natural log | y = a × ln(x) + b | 0.01 | 3.08 | 0.16 | 0.10 | −104.29 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc | ||
GSP | Arid | Linear | y = a × x + b | 0.15 | 7.10 | 0.01 | 0.02 | −12.37 |
Quadratic | y = a × x2 + bx + c | 0.16 | 3.35 | 0.31 | 0.06 | −10.41 | ||
Natural log | y = a × ln(x) + b | 0.15 | 7.15 | 0.31 | 0.02 | −12.42 | ||
Exponential | y = a × exp(b × x) + c | 0.16 | 3.35 | 0.31 | 0.06 | −10.41 | ||
Semi-arid | Linear | y = a × x + b | 0.01 | 3.47 | 0.18 | 0.08 | −110.46 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 2.28 | 0.23 | 0.13 | −109.7 | ||
Natural log | y = a × ln(x) + b | 0.01 | 3.14 | 0.16 | 0.09 | −110.15 | ||
Exponential | y = a × exp(b × x) + c | 0.01 | 2.23 | 0.23 | 0.14 | −109.61 | ||
Semi-humid | Linear | y = a × x + b | 0.01 | 0.01 | 0.00 | 0.91 | −101.14 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 0.17 | 0.02 | 0.84 | −99.54 | ||
Natural log | y = a × ln(x) + b | 0.01 | 0.01 | 0.00 | 0.92 | −101.14 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc | ||
GSR | Arid | Linear | y = a × x + b | 0.19 | 0.01 | 0.00 | 0.93 | −5.77 |
Quadratic | y = a × x2 + bx + c | 0.19 | 0.08 | 0.00 | 0.93 | −3.94 | ||
Natural log | y = a × ln(x) + b | 0.19 | 0.01 | 0.00 | 0.94 | −5.78 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc | ||
Semi-arid | Linear | y = a × x + b | 0.01 | 1.23 | 0.07 | 0.28 | −108.26 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 0.86 | 0.10 | 0.44 | −106.87 | ||
Natural log | y = a × ln(x) + b | 0.01 | 1.26 | 0.07 | 0.28 | −108.3 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc | ||
Semi-humid | Linear | y = a × x + b | 0.01 | 1.13 | 0.06 | 0.30 | −102.36 | |
Quadratic | y = a × x2 + bx + c | 0.01 | 0.57 | 0.07 | 0.57 | −100.46 | ||
Natural log | y = a × ln(x) + b | 0.01 | 1.14 | 0.07 | 0.30 | −102.37 | ||
Exponential | y = a × exp(b × x) + c | nc | nc | nc | nc | nc |
References
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Post, E.; Alley, R.B.; Christensen, T.R.; Macias-Fauria, M.; Forbes, B.C.; Gooseff, M.N.; Iler, A.; Kerby, J.T.; Laidre, K.L.; Mann, M.E.; et al. The polar regions in a 2 degrees C warmer world. Sci. Adv. 2019, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Pepin, N.; Flugel, W.A.; Yan, Y.P.; Behrawan, H.; Huang, J. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Chang. 2010, 71, 124–133. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Kerby, J.T.; Phoenix, G.K.; Bjerke, J.W.; Epstein, H.E.; Assmann, J.J.; John, C.; Andreu-Hayles, L.; Angers-Blondin, S.; Beck, P.S.A.; et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 2020, 10, 106–117. [Google Scholar] [CrossRef] [Green Version]
- Chapin, F.S.; Sturm, M.; Serreze, M.C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, J.P.; et al. Role of land-surface changes in arctic summer warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Brodie, J.F.; Roland, C.A.; Stehn, S.E.; Smirnova, E. Variability in the expansion of trees and shrubs in boreal Alaska. Ecology 2019, 100. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Levesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Blok, D.; Schaepman-Strub, G.; Bartholomeus, H.; Heijmans, M.M.P.D.; Maximov, T.C.; Berendse, F. The response of Arctic vegetation to the summer climate: Relation between shrub cover, NDVI, surface albedo and temperature. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.G.; Phillips, S.J.; Loranty, M.M.; Beck, P.S.A.; Damoulas, T.; Knight, S.J.; Goetz, S.J. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 2013, 3, 673–677. [Google Scholar] [CrossRef]
- Natali, S.M.; Schuur, E.A.G.; Rubin, R.L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 2012, 100, 488–498. [Google Scholar] [CrossRef]
- Sistla, S.A.; Moore, J.C.; Simpson, R.T.; Gough, L.; Shaver, G.R.; Schimel, J.P. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 2013, 497, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xue, Y. Simulated impacts of land cover change on summer climate in the Tibetan Plateau. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Piao, S.; Liu, Z.; Wang, T.; Peng, S.; Ciais, P.; Huang, M.; Ahlstrom, A.; Burkhart, J.F.; Chevallier, F.; Janssens, I.A.; et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 2017, 7, 359–363. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flugel, W.A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef]
- Kuang, X.X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Large-scale circulations and Tibetan Plateau summer drought and wetness in a high-resolution climate model. Int. J. Climatol. 2011, 31, 832–846. [Google Scholar] [CrossRef]
- Wu, G.X.; Liu, Y.M.; He, B.; Bao, Q.; Duan, A.M.; Jin, F.F. Thermal Controls on the Asian Summer Monsoon. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnar, P.; Boos, W.R.; Battisti, D.S. Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 2010, 38, 77–102. [Google Scholar] [CrossRef] [Green Version]
- Ge, F.; Sielmann, F.; Zhu, X.H.; Fraedrich, K.; Zhi, X.F.; Peng, T.; Wang, L. The link between Tibetan Plateau monsoon and Indian summer precipitation: A linear diagnostic perspective. Clim. Dyn. 2017, 49, 4201–4215. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wen, J.; Wang, X.; Jia, D.Y.; Chen, J.L. Analysis of the Qinghai-Xizang Plateau Monsoon Evolution and Its Linkages with Soil Moisture. Remote Sens. 2016, 8, 493. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Jeong, S.J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.S.; Li, L.Z.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on Climate Change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Jin, H.; Kang, E.; Che, T.; Jin, R.; Wu, L.; Nan, Z.; Wang, J.; Shen, Y. Cryospheric change in China. Glob. Planet. Chang. 2008, 62, 210–218. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.Y.; Zhu, X.D.; Tang, H.Y. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Xie, H.; Ye, J.; Liu, X.; Chongyi, E. Warming and drying trends on the Tibetan Plateau (1971–2005). Theor. Appl. Climatol. 2010, 101, 241–253. [Google Scholar] [CrossRef]
- You, Q.L.; Min, J.Z.; Jiao, Y.; Sillanpaa, M.; Kang, S.C. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int. J. Climatol. 2016, 36, 2633–2643. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Sun, J.; Yang, K.; Guo, W.; Wang, Y.; He, J.; Lu, H. Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s? J. Clim. 2020, 33, 8507–8522. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Piao, S.; Chen, X.; An, S.; Fu, Y.H.; Wang, S.; Cong, N.; Janssens, I.A. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Chang. Biol. 2016, 22, 3057–3066. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; He, Y.; Wu, L.; Niu, B.; Song, M.; Zhang, X. Dimensionality of grassland stability shifts along with altitudes on the Tibetan Plateau. Agric. For. Meteorol. 2020, 291. [Google Scholar] [CrossRef]
- Liu, H.; Mi, Z.; Lin, L.; Wang, Y.; Zhang, Z.; Zhang, F.; Wang, H.; Liu, L.; Zhu, B.; Cao, G.; et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl. Acad. Sci. USA 2018, 115, 4051–4056. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, W.; Zhou, C.; Ding, M.; Liu, L.; Gao, J.; Bai, W.; Wang, Z.; Zheng, D. Spatial and temporal variability in the net primary production of alpine grassland on the Tibetan Plateau since 1982. J. Geogr. Sci. 2014, 24, 269–287. [Google Scholar] [CrossRef]
- Su, F.G.; Duan, X.L.; Chen, D.L.; Hao, Z.C.; Cuo, L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef] [Green Version]
- Ni, J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Mt. Res. Dev. 2000, 20, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wu, S.; Yin, Y.; Yin, Z.-Y. Vegetation distribution on Tibetan Plateau under climate change scenario. Reg. Envir. Chang. 2011, 11, 905–915. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef]
- Anderson, K.; Fawcett, D.; Cugulliere, A.; Benford, S.; Jones, D.; Leng, R.L. Vegetation expansion in the subnival Hindu Kush Himalaya. Glob. Chang. Biol. 2020, 26, 1608–1625. [Google Scholar] [CrossRef] [Green Version]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Yao, T.; Wu, F.; Ding, L.; Sun, J.; Zhu, L.; Piao, S.; Deng, T.; Ni, X.; Zheng, H.; Ouyang, H. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Natl. Sci. Rev. 2015, 2, 468–488. [Google Scholar] [CrossRef] [Green Version]
- You, Q.L.; Fraedrich, K.; Ren, G.Y.; Pepin, N.; Kang, S.C. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int. J. Climatol. 2013, 33, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- You, Q.L.; Min, J.Z.; Zhang, W.; Pepin, N.; Kang, S.C. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dyn. 2015, 45, 791–806. [Google Scholar] [CrossRef]
- You, Q.; Sanchez-Lorenzo, A.; Wild, M.; Folini, D.; Fraedrich, K.; Ren, G.; Kang, S. Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations. Clim. Dyn. 2013, 40, 2073–2086. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Abercrombie, S.P.; Friedl, M.A. Improving the Consistency of Multitemporal Land Cover Maps Using a Hidden Markov Model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 703–713. [Google Scholar] [CrossRef]
- McIver, D.K.; Friedl, M.A. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sens. Environ. 2002, 81, 253–261. [Google Scholar] [CrossRef]
- Hutchinson, M. Anusplin Version 4.3; Centre for Resource and Environmental Studies, The Australian National University: Canberra, Australia, 2004. [Google Scholar]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, W.; Xie, T.; Wu, X.; Xie, Y.; Feng, S.; Chen, F. Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025 degrees spatial resolution in China during 1951–2011. Theor. Appl. Climatol. 2019, 138, 491–507. [Google Scholar] [CrossRef]
- Wahba, G.; Wendelberger, J. Some new mathematical-methods for variational objective analysis using splines and cross validation. Mon. Weather Rev. 1980, 108, 1122–1143. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C.K. On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for SRTM data. Int. J. Geogr. Inf. Sci. 2007, 21, 983–1008. [Google Scholar] [CrossRef]
- An, S.; Zhu, X.; Shen, M.; Wang, Y.; Cao, R.; Chen, X.; Yang, W.; Chen, J.; Tang, Y. Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000–2016 on the Tibetan Plateau. Glob. Chang. Biol. 2018, 24, 5411–5425. [Google Scholar] [CrossRef]
- Kadel, I.; Yamazaki, T.; Iwasaki, T.; Abdillah, M.R. Projection of future monsoon precipitation over the central Himalayas by CMIP5 models under warming scenarios. Clim. Res. 2018, 75, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.H.; Chen, D.L. Recent Changes in the Moisture Source of Precipitation over the Tibetan Plateau. J. Clim. 2017, 30, 1807–1819. [Google Scholar] [CrossRef]
- He, Y.T.; Kueffer, C.; Shi, P.L.; Zhang, X.Z.; Du, M.Y.; Yan, W.; Sun, W. Variation of biomass and morphology of the cushion plant Androsace tapete along an elevational gradient in the Tibetan Plateau. Plant Spec. Biol. 2014, 29, E64–E71. [Google Scholar] [CrossRef]
- Luan, W.; Li, X. Rapid urbanization and its driving mechanism in the Pan-Third Pole region. Sci. Total Environ. 2021, 750, 141270. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, J.; Huang, K.; Zu, J.; Chen, N.; Cong, N.; Stegehuis, A.I. Warming slowdown over the Tibetan plateau in recent decades. Theor. Appl. Climatol. 2019, 135, 1375–1385. [Google Scholar] [CrossRef]
- Mi, H.; Fagherazzi, S.; Qiao, G.; Hong, Y.; Fichot, C.G. Climate change leads to a doubling of turbidity in a rapidly expanding Tibetan lake. Sci. Total Environ. 2019, 688, 952–959. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Janssens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wu, J.; Song, C.; He, Y.; Niu, B.; Fu, G.; Tarolli, P.; Tietjen, B.; Zhang, X. Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. Remote Sens. 2019, 11, 360. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Jiang, D.; Fan, G. Climate Change Projection on the Tibetan Plateau: Results of CMIP5 Models. Chin. J. Atmos. Sci. 2015, 39, 260–270. [Google Scholar]
Name | Vegetated/Non-Vegetated | Description |
---|---|---|
Evergreen broadleaf forests | Vegetated | Evergreen broadleaf tree dominated. Canopy > 2 m. Tree cover > 60%. |
Deciduous broadleaf forests | Vegetated | Deciduous broadleaf tree dominated. Canopy > 2 m. Tree cover > 60%. |
Needleleaf forests | Vegetated | Needleleaf trees dominated. Canopy > 2 m. Tree cover >60%. |
Mix forests | Vegetated | Neither deciduous nor evergreen tree dominated. Canopy > 2 m. Tree cover >60%. |
Shrublands | Vegetated | Woody perennials dominated. 1–2 m height. Cover > 10%. |
Open forests (Savannas) | Vegetated | Canopy > 2 m. 10% < Tree cover < 60%. |
Wetlands | Vegetated | 30% < Water cover < 60%. Vegetation > 10%. |
Grasslands | Vegetated | Herbaceous annuals dominated. Canopy < 2 m. |
Croplands | Vegetated | Cultivated cropland > 60%. |
Urban and Built-up Lands | Non-vegetated | Building cover > 30%. |
Snow and ice | Non-vegetated | Snow and ice cover > 60%. Time > 10 months. |
Barren | Non-vegetated | Sand, rock, soil cover > 60%. Vegetation < 10%. |
Water bodies | Non-vegetated | Permanent water bodies cover > 60%. |
Transition Type | 2001–2005 | 2005–2009 | 2009–2013 | 2013–2018 |
---|---|---|---|---|
N | N | N | N | |
NV–Grasslands | 69,292 | 46,699 | 40,223 | 71,738 |
NV–Open Forests | 18 | 26 | 23 | 8 |
NV–Shrublands | 750 | 674 | 665 | 2579 |
NV–Forests | 5 | 2 | 6 | 0 |
NV–Wetlands | 185 | 201 | 281 | 363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wu, J.; Niu, B.; He, Y.; Zu, J.; Li, M.; Zhang, X. Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change. Remote Sens. 2020, 12, 4150. https://doi.org/10.3390/rs12244150
Wang Z, Wu J, Niu B, He Y, Zu J, Li M, Zhang X. Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change. Remote Sensing. 2020; 12(24):4150. https://doi.org/10.3390/rs12244150
Chicago/Turabian StyleWang, Zhipeng, Jianshuang Wu, Ben Niu, Yongtao He, Jiaxing Zu, Meng Li, and Xianzhou Zhang. 2020. "Vegetation Expansion on the Tibetan Plateau and Its Relationship with Climate Change" Remote Sensing 12, no. 24: 4150. https://doi.org/10.3390/rs12244150