A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia
"> Figure 1
<p>Workflow and location of the study sites used to validate the phenology model. * shows the location of the field site [<a href="#B26-remotesensing-12-04008" class="html-bibr">26</a>] and two other published studies used.</p> "> Figure 2
<p>Location of the field sites and mangrove patches in the Gladstone region, Queensland. Aerial images of the study site for 1996, provided by the State of Queensland (QAP5402131/47).</p> "> Figure 3
<p>Panel (<b>A</b>) shows every available Enhanced Vegetation Index (EVI) observation for every pixel in the 17-ha region of interest from February 1995 to December 1996 for the Gladstone region. Panel (<b>B</b>) shows the median and standard deviation of the observed EVI values in grey dots and lines respectively, and the apparent phenology (i.e., GAM) in red. Panel (<b>C</b>) shows the apparent phenology, the definitions of start and end of season (SOS, EOS), peak growing season (PGS) and length of the growing season (LGS). Shaded areas represent the wet season months.</p> "> Figure 4
<p>Apparent phenology for each study site. Grey dashed circles show examples of year-to-year variations in the apparent phenology. Blue squares represent locations where only published literature was used, while the red square represents the location of the field data site and where published literature was used.</p> "> Figure 5
<p>Apparent phenology vs. in situ data from [<a href="#B26-remotesensing-12-04008" class="html-bibr">26</a>]. The red line represents the apparent phenology for the Gladstone area (1995–1999). Grey bars and black lines represent the values for each variable and standard error, respectively. On the left panel, the data are grouped by month and on the right panel, the data are presented in chronological order. No in situ data were recorded for April during the experiment. Panels (<b>A</b>, <b>C</b> and <b>E</b>) display the monthly leaves lost, leaves gained, and net leaf production respectively. Panels (<b>B</b>, <b>D</b> and <b>F</b>) display the leaves lost, leaves gained, and net leaf production in chronological order.</p> "> Figure 6
<p>Panels (<b>A</b>–<b>F</b>) display the a qualitative measure of Leaf fall, Leaf gain and Net Leaf Production for each study site on the left, right and center respectively. Each panel represents a different study site. The red line represents the monthly value of the apparent phenology from the GAMs and the blue dotted line represents the apparent phenology shifted by three months.</p> "> Figure 7
<p>Violin plot of showing the Start of Season (<b>A</b>), and Peak of Growing Season (<b>B</b>) for mangroves in the Gladstone region (QLD) between 1995–1999, as determined by the apparent phenology. The height of each violin represents the range of values, and the width of each violin represents the number of values in that range.</p> "> Figure 8
<p>Time difference between peak leaf production and peak EVI during a given year for a simulated mangrove tree.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site Description
2.2. Field Observations and Measurements
2.3. Published Literature on the Phenology of R. stylosa
2.4. Landsat Image Acquisition and Processing
2.5. Time Series Analysis Using Generalized Additive Models
2.6. Phenological Metrics
2.7. Validation of the GAMs
3. Results
3.1. Apparent Phenology
3.2. Apparent Phenology and Field Data
3.2.1. Apparent Phenology and Leaves Lost
3.2.2. Apparent Phenology and Leaves Gained
3.2.3. Apparent Phenology and Net Leaf Production
3.2.4. Validation: Apparent Phenology vs. In Situ Variables
3.3. Apparent Phenology and Published Literature
Validation: Apparent Phenology vs. Published Data
3.4. Phenological Metrics
4. Discussion
4.1. The Phenology of Rhizophora Stylosa
4.2. GAMs vs. Parametric Methods
4.3. Validation of the GAMs
4.4. Moving Forward
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chambers, L.E.; Altwegg, R.; Barbraud, C.; Barnard, P.; Beaumont, L.J.; Crawford, R.J.M.M.; Durant, J.M.; Hughes, L.; Keatley, M.R.; Low, M.; et al. Phenological Changes in the Southern Hemisphere. PLoS ONE 2013, 8, e75514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garonna, I.; Jong, R.; Schaepman, M.E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Chang. Biol. 2016, 22, 1456–1468. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.E.; Leite, P.T.P.P.; et al. Linking plant phenology to conservation biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A. Phenology: Its Importance To the. Clim. Chang. 2002, 54, 379–385. [Google Scholar] [CrossRef]
- Duke, N.C.; Kleine, D.; University of, Q. Australia’s Mangroves: The Authoritative Guide to Australia’s Mangrove plants; University of Queensland: Brisbane, Australia, 2006; ISBN 0646461966. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Duke, N.C. Phenological Trends with Latitude in the Mangrove Tree Avicennia Marina. J. Ecol. 1990, 78, 113–133. [Google Scholar] [CrossRef]
- Metcalfe, K.N.; Franklin, D.C.; McGuinness, K.A. Mangrove litter fall: Extrapolation from traps to a large tropical macrotidal harbour. Estuar. Coast. Shelf Sci. 2011, 95, 245–252. [Google Scholar] [CrossRef]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, I.D.; Semeniuk, V. Mangroves of the Kimberley coast: Ecological patterns in a tropical Ria coast setting. J. R. Soc. West. Aust. 2011, 94, 213–237. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N.C. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Lymburner, L.; Bunting, P.; Lucas, R.; Scarth, P.; Alam, I.; Phillips, C.; Ticehurst, C.; Held, A. Mapping the multi-decadal mangrove dynamics of the Australian coastline. Remote Sens. Environ. 2019, 238, 111185. [Google Scholar] [CrossRef]
- Rogers, K.; Lymburner, L.; Salum, R.; Brooke, B.P.; Woodroffe, C.D. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data. Hydrobiologia 2017, 803, 49–68. [Google Scholar] [CrossRef]
- Asbridge, E.; Lucas, R.; Ticehurst, C.; Bunting, P. Mangrove response to environmental change in Australia’s Gulf of Carpentaria. Ecol. Evol. 2016, 6, 3523–3539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Songsom, V.; Koedsin, W.; Ritchie, J.R.; Huete, A. Mangrove Phenology and Environmental Drivers Derived from Remote Sensing in Southern Thailand. Remote Sens. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.; Phillips, C. Digital earth Australia—Unlocking new value from earth observation data. Big Earth Data 2017, 1, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Broich, M.; Huete, A.; Paget, M.; Ma, X.; Tulbure, M.; Coupe, N.R.; Evans, B.; Beringer, J.; Devadas, R.; Davies, K.; et al. A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications. Environ. Model. Softw. 2015, 64, 191–204. [Google Scholar] [CrossRef]
- Pastor-Guzman, J.; Atkinson, P.M.; Dash, J.; Rioja-Nieto, R. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8. Remote Sens. 2015, 7, 14530–14558. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tan, B.; Yu, Y. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982–2010. Int. J. Biometeorol. 2014, 58, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Melaas, E.K.; Sulla-Menashe, D.; Gray, J.M.; Black, T.A.; Morin, T.H.; Richardson, A.D.; Friedl, M.A. Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat. Remote Sens. Environ. 2016, 186, 452–464. [Google Scholar] [CrossRef]
- White, M.A.; De Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’keefe, J.; Zhang, G.; Nemani, R.R.; Van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Xin, Q.; Li, J.; Li, Z.; Li, Y.; Zhou, X. Evaluations and comparisons of rule-based and machine-learning-based methods to retrieve satellite-based vegetation phenology using MODIS and USA National Phenology Network data. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102189. [Google Scholar] [CrossRef]
- Liu, L.Y.; Tang, H.; Caccetta, P.; Lehmann, E.A.; Hu, Y.; Wu, X.L. Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series stacks in Yulin District, a key region of the Three-North Shelter region, China. Environ. Monit. Assess. 2013, 185, 9949–9965. [Google Scholar] [CrossRef] [PubMed]
- Duke, N.C.; Burns, K.A.; Swannell, R.P.J. Research into the Bioremediation of Oil Spills in Tropical Australia: With Particular Emphasis on Oiled Mangrove and Salt Marsh Habitat; AMSA: Townsville, Australia, 1999. [Google Scholar]
- Trewin, C. Mangrove & Saltmarsh Monitoring: Literature Review. Report prepared by Sinclair Kn. Merz For the Gladstone Ports Corp. 2013, CA120019 R, 53, Australia. [Google Scholar]
- TMR—Queensland Dept. of Transport and Main Roads 1998–1999—Fishermans Landing Tide Gauge Archived Interval Recordings. Available online: https://www.data.qld.gov.au/dataset/fishermans-landing-tide-gauge-archived-interval-recordings/resource/ef1d0409-06ee-498d-83a0-649f8478a786 (accessed on 15 November 2020).
- Duke, N.C.; Bunt, J.S.; Williams, W.T. Observations on the floral and vegetative phenologies of north- eastern Australian mangroves. Aust. J. Bot. 1984, 32, 87–99. [Google Scholar] [CrossRef]
- Saenger, P.; Moverley, J. Vegetative phenology of mangroves along the Queensland coastline. Proc. Ecol. Soc. Aust. 1985, 13, 257–265. [Google Scholar]
- Duke, N.C. Sustained high levels of foliar herbivory of the mangrove Rhizophora stylosa by a moth larva Doratifera stenosa (Limacodidae) in north-eastern Australia. Wetl. Ecol. Manag. 2002, 10, 403–419. [Google Scholar] [CrossRef]
- Coupland, G.T.; Paling, E.I.; McGuinness, K.A. Vegetative and reproductive phenologies of four mangrove species from northern Australia. Aust. J. Bot. 2005, 53, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.C.; Saintilan, N. Growth of the mangrove species Rhizophora stylosa Griff. at its southern latitudinal limit in eastern Australia. Aquat. Bot. 2012, 101, 8–17. [Google Scholar] [CrossRef]
- Lewis, A.; Lymburner, L.; Purss, M.B.J.; Brooke, B.; Evans, B.; Ip, A.; Dekker, A.G.; Irons, J.R.; Minchin, S.; Mueller, N.; et al. Rapid, high-resolution detection of environmental change over continental scales from satellite data—The Earth Observation Data Cube. Int. J. Digit. Earth 2016, 9, 106–111. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Younes, N.; Joyce, K.E.; Northfield, T.D.; Maier, S.W. The effects of water depth on estimating Fractional Vegetation Cover in mangrove forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101924. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1, 297–318. [Google Scholar] [CrossRef]
- Jones, K.; Almond, S. Moving out of the Linear Rut: The Possibilities of Generalized Additive Models. Trans. Inst. Br. Geogr. 1992, 17, 434. [Google Scholar] [CrossRef]
- Zuur, A.F. A Beginner’s Guide to Generalized Additive Models With R; Highland Statistics Ltd.: Newburgh, NY, USA, 2012; ISBN 9780957174122;0957174128. [Google Scholar]
- Zuur, A.F.; Saveliev, A.A.; Ieno, E.N. A Beginner’s Guide to Generalised Additive Mixed Models with R 2014; Highland Statistics Ltd.: Scotland, UK, 2014. [Google Scholar]
- Pedersen, E.J.; Miller, D.L.; Simpson, G.L.; Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019, 7, e6876. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.J.; Letham, B.; Taylor, S.J.; Letham, B. Forecasting at Scale. Am. Stat. 2018, 72, 37–45. [Google Scholar] [CrossRef]
- Restrepo-Coupe, N.; Huete, A.; Davies, K. Satellite Phenology Validation. In AusCover Good Practice Guidelines: A Technical Handbook Supporting Calibration and Validation Activities of Remotely Sensed Data Product; Held, A., Phinn, S., Soto-Berelov, M., Jones, S., Eds.; TERN AusCover: Canberra, Australia, 2015; pp. 155–157. ISBN 978-0-646-94137-0. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Smith, M.N.; Stark, S.C.; Taylor, T.C.; Ferreira, M.L.; de Oliveira, E.; Restrepo-Coupe, N.; Chen, S.; Woodcock, T.; dos Santos, D.B.; Alves, L.F.; et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. New Phytol. 2019, 222, 1284–1297. [Google Scholar] [CrossRef]
- Wu, J.; Albert, L.P.; Lopes, A.P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K.T.; Guan, K.; Stark, S.C.; Christoffersen, B.; Prohaska, N.; et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 2016, 351, 972–976. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, C.E.; Cahoon, D.R.; Friess, D.A.; Guntenspergen, G.R.; Krauss, K.W.; Reef, R.; Rogers, K.; Saunders, M.L.; Sidik, F.; Swales, A.; et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 2015, 526, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, J.M.; Wang, J.; Blanco-Correa, M. Mapping Disturbances in a Mangrove Forest Using Multi-Date Landsat TM Imagery. Environ. Manage. 2001, 27, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Giri, C.; Long, J.; Tieszen, L. Mapping and Monitoring Louisiana’s Mangroves in the Aftermath of the 2010 Gulf of Mexico Oil Spill. J. Coast. Res. 2011, 27, 1059–1064. [Google Scholar] [CrossRef]
- Coldren, G.A.; Barreto, C.R.; Wykoff, D.D.; Morrissey, E.M.; Langley, J.A.; Feller, I.C.; Chapman, S.K. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology 2016, 97, 3167–3175. [Google Scholar] [CrossRef]
- Coldren, G.A.; Langley, J.A.; Feller, I.C.; Chapman, S.K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 2018, 0. [Google Scholar] [CrossRef] [Green Version]
- Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 2018, 618, 665–673. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Yee, T.W.; Mitchell, N.D. Generalized Additive Models in Plant Ecology. J. Veg. Sci. 1991, 2, 587–602. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features. Remote Sens. Environ. 2018, 210, 193–207. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ. 2012, 122, 75–91. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Held, A.; Ticehurst, C.; Lymburner, L.; Williams, N. High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing. Int. J. Remote Sens. 2003, 24, 2739–2759. [Google Scholar] [CrossRef]
- Worthington, T.A.; Ermgassen, P.S.E.zu; Friess, D.A.; Krauss, K.W.; Lovelock, C.E.; Thorley, J.; Tingey, R.; Woodroffe, C.D.; Bunting, P.; Cormier, N.; et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 2020, 10, 14652. [Google Scholar] [CrossRef] [PubMed]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamilton, S.; Barbier, E.B.; Primavera, J.; Lewis, R.R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 2019. [Google Scholar] [CrossRef]
- Aguirre-Gutiérrez, J.; Rifai, S.; Shenkin, A.; Oliveras, I.; Bentley, L.P.; Svátek, M.; Girardin, C.A.J.; Both, S.; Riutta, T.; Berenguer, E.; et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ. 2021, 252, 112122. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Sagar, S.; Lymburner, L.; Beaman, R.J. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 2019. [Google Scholar] [CrossRef]
Ref. | Target Species | Leaf Fall or Leaf Gain | Study Duration | Observation Frequency | Location | Satellite Images Used | Satellite Images Date Range | WRS2 Path/Row |
---|---|---|---|---|---|---|---|---|
[29] | C. tagal var. tagal | LF, LG | 1975–1978 | Monthly | Hinchinbrook Island, QLD | 70 | July/1987 to December/1991 | 95/73 |
B. gymnorhiza | ||||||||
R. apiculata | ||||||||
R. stylosa | ||||||||
R. X lamarckii | ||||||||
[30] | A. annulata | LF, LG | 1979–1982 | Monthly | Gladstone and Proserpine, QLD | 80 | August/1987 to December/1991 | 91/76, and 91/77 |
A. corniculaturn | ||||||||
A. marina | ||||||||
C. tagal | ||||||||
E. agallocha | ||||||||
L. racemosa | ||||||||
O. octodonta | ||||||||
R. stylosa | ||||||||
X australasicus | ||||||||
[31] * | R. stylosa | LF, LG | 1996–1998 | Monthly | Gladstone, QLD | 106 | January/1995 to December/1999 | 91/76, and 91/77 |
[32] | A. marina | LF, LG | 1999–2001 | Monthly | Darwin Harbor, NT | 113 | January/1998 to December/2002 | 106/69 |
C. australis | ||||||||
R stylosa | ||||||||
S. alba | ||||||||
[8] | A. marina | LF | 1997–2000 | Monthly | Darwin Harbor, NT | 195 | February/1996 to December/2001 | 106/69 |
B. exaristata | ||||||||
C. schultzii | ||||||||
C. australis | ||||||||
E. ovalis | ||||||||
L. racemosa | ||||||||
R. stylosa | ||||||||
S. alba | ||||||||
[33] | R. stylosa | LF, LG | 2002–2004 | 73 days | South West Rocks Creek, Richmond River, Brunswick River, NSW | 104 | January/1998 to December/2002 | 88/81 |
Date of Field Data Collection | Date of Closest Satellite Image | Difference (Days) |
---|---|---|
6-June-1996 | 18-May-1996 | 9 days |
24-Jully-1996 | 31-July-1996 | 7 days |
24-August-1996 | 16-August-1996 | 8 days |
23-September-1996 | 17-September-1996 | 6 days |
15-October-1996 | 19-October-1996 | 4 days |
20-November-1996 | 04-November-1996 | 16 days |
17-December-1996 | 22-December-1996 | 5 days |
16-January-1997 | 23-January-1997 | 7 days |
14-Mararch-1997 | 12-March-1997 | 2 days |
2-May-1997 | 29-April-1997 | 3 days |
18-June-1997 | 16-June-1997 | 2 days |
23-July-1997 | 18-July-1997 | 5 days |
21-August-1997 | 19-August-1997 | 2 days |
7-October-1997 | 06-October-1997 | 1 days |
11-November-1997 | 17-November-1997 | 4 days |
10-December-1997 | 09-December-1997 | 1 days |
4-February-1998 | 26-January-1998 | 9 days |
7-May-1998 | 02-May-1998 | 5 days |
18-August-1998 | 22-August-1998 | 4 days |
Explained Variance | Mean Absolute Error | R2 | |
---|---|---|---|
Data grouped by month | 0.44 | 0.08 | 0.35 |
Data in chronological order | 0.42 | 0.09 | 0.32 |
Site | Shift (Months) | Leaf Fall | Leaf Gain | Net Leaf Production | |||
---|---|---|---|---|---|---|---|
R2 | p-Value | R2 | p-Value | R2 | p-Value | ||
Duke_1984 | −3 | 0.01 | 0.75 | 0.24 | 0.11 | 0.15 | 0.22 |
−2 | 0.24 | 0.11 | 0.17 | 0.18 | 0.00 | 0.93 | |
−1 | 0.33 | 0.05 | 0.24 | 0.10 | 0.00 | 0.91 | |
0 | 0.33 | 0.05 | 0.47 | 0.01 | 0.05 | 0.49 | |
Saegner_1985 | −3 | 0.11 | 0.29 | 0.54 | 0.01 | 0.55 | 0.01 |
−2 | 0.16 | 0.19 | 0.43 | 0.02 | 0.36 | 0.04 | |
−1 | 0.21 | 0.13 | 0.35 | 0.04 | 0.23 | 0.12 | |
0 | 0.41 | 0.02 | 0.35 | 0.04 | 0.14 | 0.23 | |
Duke_2002 | −3 | 0.38 | 0.03 | 0.53 | 0.01 | 0.01 | 0.81 |
−2 | 0.74 | 0.00 | 0.90 | 0.00 | 0.04 | 0.53 | |
−1 | 0.71 | 0.00 | 0.36 | 0.04 | 0.43 | 0.02 | |
0 | 0.25 | 0.10 | 0.02 | 0.70 | 0.51 | 0.01 | |
Coupland_2005 | −3 | 0.04 | 0.52 | 0.39 | 0.03 | 0.15 | 0.22 |
−2 | 0.07 | 0.42 | 0.05 | 0.49 | 0.00 | 0.98 | |
−1 | 0.08 | 0.38 | 0.08 | 0.38 | 0.00 | 0.90 | |
0 | 0.06 | 0.46 | 0.00 | 0.87 | 0.01 | 0.71 | |
Wilson_2012 | −3 | 0.02 | 0.63 | 0.42 | 0.02 | 0.75 | 0.00 |
−2 | 0.06 | 0.45 | 0.71 | 0.00 | 0.53 | 0.01 | |
−1 | 0.33 | 0.05 | 0.66 | 0.00 | 0.16 | 0.20 | |
0 | 0.71 | 0.00 | 0.37 | 0.04 | 0.00 | 0.83 | |
Metcalfe_2011 | −3 | 0.06 | 0.46 | - | - | - | - |
−2 | 0.55 | 0.01 | - | - | - | - | |
−1 | 0.79 | 0.00 | - | - | - | - | |
0 | 0.61 | 0.00 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, N.; Northfield, T.D.; Joyce, K.E.; Maier, S.W.; Duke, N.C.; Lymburner, L. A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sens. 2020, 12, 4008. https://doi.org/10.3390/rs12244008
Younes N, Northfield TD, Joyce KE, Maier SW, Duke NC, Lymburner L. A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sensing. 2020; 12(24):4008. https://doi.org/10.3390/rs12244008
Chicago/Turabian StyleYounes, Nicolas, Tobin D. Northfield, Karen E. Joyce, Stefan W. Maier, Norman C. Duke, and Leo Lymburner. 2020. "A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia" Remote Sensing 12, no. 24: 4008. https://doi.org/10.3390/rs12244008