A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame
"> Figure 1
<p>Sketch of the scene of row crops. (<b>a</b>) Overlapping relationship between leaves and canopy closures involved in the calculation of gap probabilities; (<b>b</b>) three-dimensional map of row crops. Here, <span class="html-italic">A</span><sub>1</sub> is the row width, <span class="html-italic">A</span><sub>2</sub> is the between-row distance, and <span class="html-italic">h</span> is the canopy height.</p> "> Figure 2
<p>Sketch of radiative transfer inside an isotropic scattering layer and the soil. <span class="html-italic">E<sub>s</sub></span> is the downward irradiance on the horizontal plane, <span class="html-italic">r<sub>cc_</sub></span><sub>1</sub> is the single scattering contribution of the canopy closure, <span class="html-italic">τ<sub>s</sub></span> is the transmittance of the canopy closure in the solar direction, and <span class="html-italic">τ<sub>o</sub></span> is the transmittance of the canopy closure in the solar direction. <span class="html-italic">τ</span> is the optical thickness, <span class="html-italic">k</span> is the extinction coefficient, and <span class="html-italic">s</span> is the path length.</p> "> Figure 3
<p>Sketch of the between-row area. (<b>a</b>) Angle relationship between the escape surface and the bottom of the between-row area. (<b>b</b>) Angle relationship between the escape surface and the <span class="html-italic">z</span> position of the between-row area. (<b>c</b>) Geometric relationship for the viewing probability of the between-row soil when <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>≥</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> </semantics> </math>. (<b>d</b>) Geometric relationship for the viewing probability of the between-row soil when <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo><</mo> <msub> <mi>A</mi> <mn>1</mn> </msub> </mrow> </semantics> </math>. Here, <span class="html-italic">α<sub>o</sub></span> is the inclined angle projected in the perpendicular plane in the viewing direction, <span class="html-italic">α</span><sub>1</sub> is the openness angle of the between-row area, and <span class="html-italic">α</span><sub>2</sub> is the nonopenness angle of the between-row area. <span class="html-italic">s<sub>br</sub></span> is the path length of the light of the canopy closure for the between-row soil between being observed, <math display="inline"> <semantics> <mrow> <msub> <mi>φ</mi> <mi>r</mi> </msub> </mrow> </semantics> </math> is the row azimuth angle, <span class="html-italic">A</span><sub>1</sub> is the row width, <span class="html-italic">A</span><sub>2</sub> is the between-row distance, and <span class="html-italic">h</span> is the canopy height.</p> "> Figure 4
<p>The abstract scenes of row crops. (<b>a</b>) The proportion of between-row dominance (Stage_rc1), (<b>b</b>) proportions of between-row and canopy closure equality (Stage_rc2), (<b>c</b>) proportion of the canopy closure dominance (Stage_rc3), and (<b>d</b>) continuous crops (Stage_cc).</p> "> Figure 5
<p>Geographic location of the study area (<b>a</b>) Plots in Zhangye and Zhongwe; (<b>b</b>) World-View 3 image in the Zhongwei area and its corresponding quadrats. Here, the field measurement was performed in Zhangye, hence there is no satellite image. The green points in (<b>b</b>) represent the quadrats in the field measurement with the same size as the resolution of the World-View 3 image.</p> "> Figure 6
<p>The distribution of the sum of the reflectance in the red band and near-infrared (NIR) band simulated by the RGM model and the row model in four viewing modes: (<b>a</b>) principal plane (PP) mode in the red band, (<b>b</b>) principal plane (PP) mode in the NIR band, (<b>c</b>) orthogonal plane (OP) mode in the red band, (<b>d</b>) orthogonal plane (OP) mode in the NIR band, (<b>e</b>) along-row plane (AR) mode in the red band, (<b>f</b>) along-row plane (AR) mode in the NIR band, (<b>g</b>) orthogonal row plane (OR) mode in the red band, and (<b>h</b>) orthogonal row plane (OR) mode in the NIR band. Here, VZA is the viewing zenith angle.</p> "> Figure 7
<p>The distribution of reflectances in the single scattering in the NIR band and the multiple scattering in the NIR band simulated by the RGM model and the row model in four viewing modes: (<b>a</b>) principal plane (PP) mode in the single scattering in the NIR band, (<b>b</b>) principal plane (PP) mode in the multiple scattering in the NIR band, (<b>c</b>) orthogonal plane (OP) mode in the single scattering in the NIR band, (<b>d</b>) orthogonal plane (OP) mode in the multiple scattering in the NIR band, (<b>e</b>) along-row plane (AR) mode in the single scattering in the NIR band, (<b>f</b>) along-row plane (AR) mode in the multiple scattering in the NIR band, (<b>g</b>) orthogonal row plane (OR) mode in the single scattering in the NIR band, and (<b>h</b>) orthogonal row plane (OR) mode in the multiple scattering in the NIR band. Here, VZA is the viewing zenith angle.</p> "> Figure 8
<p>The distribution of reflectances for the single scattering near the hotspot (principal plane) model. (<b>a</b>) Single scattering near the hotspot in the red band, and (<b>b</b>) single scattering near the hotspot in the NIR band. Here, VZA is the viewing zenith angle.</p> "> Figure 9
<p>Comparison of the sum of the reflectance simulated by the row model and field data at the wavelength in the vertical viewing direction on (<b>a</b>) 20 May, (<b>b</b>) 25 May, (<b>c</b>) 1 June, (<b>d</b>) 16 June, (<b>e</b>) 22 June, and (<b>f</b>) 1 July. Here, the noise in the water vapor absorption was removed.</p> "> Figure 10
<p>Comparison of the sum of the reflectance simulated by the row model and the reflectance at the top of the canopy measured by the World-View 3 satellite in the vertical viewing direction. (<b>a</b>) Corn; (<b>b</b>) rice; (<b>c</b>) matrimony vine. Here, M represents the data measured by the World-View 3 satellite and S represents the simulated data of the row model.</p> "> Figure 11
<p>Comparison of the distribution of the sum of the reflectance simulated by the row model and field data in the multiangle observation for the principal plane (PP) mode (<b>a</b>,<b>e</b>), orthogonal plane (OP) mode (<b>b</b>,<b>f</b>), along-row plane (AR) mode (<b>c</b>,<b>g</b>), and orthogonal row plane (OR) mode (<b>d</b>,<b>h</b>). (<b>a</b>–<b>d</b>) Red band (670 nm); (<b>e</b>–<b>h</b>) NIR band (860 nm). VZA is the viewing zenith angle. The black box is the abnormal point in the measurement.</p> "> Figure 12
<p>Statistics of the distribution of the sum of the reflectance simulated by the row model and field data in the multiangle observation for the principal plane (PP) mode (<b>a</b>,<b>e</b>), orthogonal plane (OP) mode (<b>b</b>,<b>f</b>), along-row plane (AR) mode (<b>c</b>,<b>g</b>) and orthogonal row plane (OR) mode (<b>d</b>,<b>h</b>). The red line is a 1:1 line. R is the correlation coefficient, RMSE is the root mean square error, and MAD is the mean absolute deviation, which represents the difference between Data <span class="html-italic">A</span> and Data <span class="html-italic">B</span>, expressed as a percentage. Its expression is <math display="inline"> <semantics> <mrow> <mstyle displaystyle="true"> <munderover> <mo>∑</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mrow> <mfrac> <mn>1</mn> <mi>m</mi> </mfrac> <mrow> <mo>|</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>−</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>/</mo> <mi>B</mi> </mrow> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> </semantics> </math>. Here, <span class="html-italic">m</span> is the number of comparison groups, <span class="html-italic">A</span> is the sum of the reflectance simulated by the row model, and <span class="html-italic">B</span> is field data.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Row Model
2.1.1. General Form of Row Crops Based on a Geometric Optics Approach
2.1.2. Reflectance of the Canopy Closure
- Single-scattering contribution of the canopy closure
- 2.
- Multiple-scattering contribution of the canopy closure
2.1.3. Reflectance of the Between-Row Area
- Single-scattering contribution of the between-row area
- 2.
- Multiple-scattering contribution of the between-row area
2.2. Materials and Preparations
2.2.1. Preparations for Validation-Based Computer-Simulated Data
2.2.2. Preparations for Validation-Based In Situ Data
- Field measurement data in Zhangye
- 2.
- Satellite measurement data in Zhongwei
3. Results
3.1. Validation of Row Model Using Computer-Simulated Data
3.2. Validation of Row Model Using In Situ Data
3.2.1. Spectral Curve
- Validation of the sum of the reflectance during the growing season using field data
- 2.
- Validation of the reflectance for different types of row crops using satellite data
3.2.2. Distribution of the Sum of the Reflectance on the Multiangle Observation
4. Discussion
4.1. Multiple Scattering of Row Crops in the GO Approach
4.2. Hotspot of Row Crops in the Single-Scattering Contribution
4.3. Analysis of the Row Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Liang, S.L. Quantitative Remote Sensing of Land Surfaces; John Wiley-Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 413–415. [Google Scholar]
- Li, X.; Strahler, A.H. Geometric-Optical Modeling of a Conifer Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1985, 23, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Pinty, B.; Gobron, N.; Widlowski, J.L.; Gerstl, S.A.W.; Verstraete, M.M.; Antunes, M.; Bacour, C.; Gascon, F.; Gastellu, J.P.; Goel, N. Radiation transfer model intercomparison (RAMI) exercise. J. Geophys. Res. Atmos. 2001, 106, 523–538. [Google Scholar] [CrossRef]
- Pinty, B.; Widlowski, J.L.; Taberner, M.; Gobron, N.; Verstraete, M.M.; Disney, M.; Gascon, F.; Gastellu, J.P.; Jiang, L.; Kuusk, A. Radiation Transfer Model Intercomparison (RAMI) exercise: Results from the second phase. J. Geophys. Res. Atmos. 2004, 109, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Widlowski, J.L.; Taberner, M.; Pinty, B.; Bruniquel-Pinel, V.; Disney, M.; Fernandes, R.; Gastellu-Etchegorry, J.P.; Gobron, N.; Kuusk, A.; Lavergne, T. The third Radiation transfer Model Intercomparison (RAMI) exercise: Documenting progress in canopy reflectance modelling. J. Geophys. Res. Atmos. 2007, 112, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Ross, J. The Radiation Regime and Architecture of Plant Stands; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Yang, X.; Short, T.H.; Fox, R.D.; Bauerle, W.L. Plant architectural parameters of a greenhouse cucumber row crop. Agric. For. Meteorol. 1990, 51, 93–105. [Google Scholar] [CrossRef]
- Verbrugghe, M.; Cierniewski, J. Effects of Sun and view geometries on cotton bidirectional reflectance. Test of a geometrical model. Remote Sens. Environ. 1995, 54, 189–197. [Google Scholar] [CrossRef]
- Annandale, J.G.; Jovanovic, N.Z.; Campbell, G.S.; Du, S.N.; Lobit, P. Two-dimensional solar radiation interception model for hedgerow fruit trees. Agric. For. Meteorol. 2004, 121, 207–225. [Google Scholar] [CrossRef]
- Pieri, P. Modelling radiative balance in a row-crop canopy: Cross-row distribution of net radiation at the soil surface and energy available to clusters in a vineyard. Ecol. Model. 2010, 221, 802–811. [Google Scholar] [CrossRef]
- Norman, J.M.; Welles, J.M. Radiative Transfer in an Array of Canopies. Agron. J. 1983, 75, 481–488. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Woodcock, C.E.; Caetano, M.R.; Strahler, A.H. An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies. IEEE Trans. Geosci. Remote Sens. 2002, 37, 987–999. [Google Scholar]
- Kimes, D.S. Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sens. Environ. 1983, 13, 33–55. [Google Scholar] [CrossRef]
- Jackson, R.D.; Reginato, R.J.; Pinter, P.J.; Idso, S.B. Plant canopy information extraction from composite scene reflectance of row crops. Appl. Opt. 1979, 18, 3775–3782. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.Y.; Xu, X.R.; Fan, W.J. A unified canopy bidirectional reflectance (BRDF) model for row crops. Sci. China Earth Sci. 2012, 55, 824–836. [Google Scholar] [CrossRef]
- Zhou, K.; Guo, Y.; Geng, Y.; Zhu, Y.; Cao, W.; Tian, Y. Development of a Novel Bidirectional Canopy Reflectance Model for Row-Planted Rice and Wheat. Remote Sens. 2014, 6, 7632–7659. [Google Scholar] [CrossRef] [Green Version]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Kuusk, A. The hot-spot effect of a uniform vegetative cover. Sov. J. Remote Sens. 1985, 3, 645–658. [Google Scholar]
- Qin, W.; Goel, N.S. An evaluation of hotspot models for vegetation canopies. Remote Sens. Rev. 1995, 13, 121–159. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Modeling the gap probability of a discontinuous vegetation canopy. IEEE Trans. Geosci. Remote Sens. 1988, 26, 161–170. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. A four-scale bidirectional reflectance model based on canopy architecture. Geosci. Remote Sens. IEEE Trans. 1997, 35, 1316–1337. [Google Scholar] [CrossRef]
- Chen, J.M.; Li, X.; Nilson, T.; Strahler, A. Recent advances in geometrical optical modelling and its applications. Urban Stud. 2013, 50, 1403–1422. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H. Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy. IEEE Trans. Geosci. Remote Sens. 1986, 24, 906–919. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. A hotspot function in a simple bidirectional reflectance model for satellite applications. J. Geophys. Res. Atmos. 1997, 102, 25907–25914. [Google Scholar] [CrossRef]
- Chen, J.M.; Leblanc, S.G. Multiple-Scattering Scheme Useful for Geometric Optical Modeling. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1061–1071. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A.H.; Woodcock, C.E. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 466–480. [Google Scholar] [CrossRef]
- Chen, L.F.; Liu, Q.H.; Fan, W.J.; Li, X.W.; Xiao, Q.; Yan, G.J.; Tian, G.L. A bi-directional gap model for simulating the directional thermal radiance of row crops. Sci. China Earth Sci. 2002, 45, 1087–1098. [Google Scholar] [CrossRef]
- Yan, G.J.; Jiang, L.M.; Wang, J.D.; Chen, L.F.; Li, X.W. Thermal bidirectional gap probability model for row crop canopies and validation. Sci. China Earth Sci. 2003, 46, 1241–1249. [Google Scholar] [CrossRef]
- Ma, X.; Wang, T.; Lu, L. A Refined Four-Stream Radiative Transfer Model for Row-Planted Crops. Remote Sens. 2020, 12, 1290. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Gu, X.; Verhoef, W.; Wang, Q.; Yu, T.; Liu, Q.; Huang, H.; Qin, W.; Chen, L.; Zhao, H. A spectral directional reflectance model of row crops. Remote Sens. Environ. 2010, 114, 265–285. [Google Scholar] [CrossRef]
- Dorigo, W.A. Improving the Robustness of Cotton Status Characterisation by Radiative Transfer Model Inversion of Multi-Angular CHRIS/PROBA Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 18–29. [Google Scholar] [CrossRef]
- Verhoef, W. Theory of Radiative Transfer Models Applied in Optical Remote Sensing of Vegetation Canopies; Landbouw Universiteit Wageningen: Wageningen, The Netherlands, 1998. [Google Scholar]
- Campbell, G.S. Derivation of an angle density function for canopies with ellipsoidal leaf angle distributions. Agric. For. Meteorol. 1990, 49, 173–176. [Google Scholar] [CrossRef]
- Wang, W.M.; Li, Z.L.; Su, H.B. Comparison of leaf angle distribution functions: Effects on extinction coefficient and fraction of sunlit foliage. Agric. For. Meteorol. 2007, 143, 106–122. [Google Scholar] [CrossRef]
- Liou, K.N. An Introduction to Atmospheric Radiation; Academic Press: London, UK, 2002; pp. 1–28. [Google Scholar]
- Wang, Q.; Li, P. Canopy vertical heterogeneity plays a critical role in reflectance simulation. Agric. For. Meteorol. 2013, 169, 111–121. [Google Scholar] [CrossRef]
- Verhoef, W. Earth observation modeling based on layer scattering matrices. Remote Sens. Environ. 1985, 17, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.R.G.; Yueqin, X.; Norman, J.M. Crop structure and the penetration of direct sunlight. Agric. For. Meteorol. 1985, 35, 83–101. [Google Scholar] [CrossRef]
- Antyufeev, V.S.; Marshak, A.L. Inversion of Monte Carlo model for estimating vegetation canopy parameters. Remote Sens. Environ. 1990, 33, 201–209. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy 1: Theory. J. Geophys. Res. Atmos. 1981, 86, 3039–3054. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Goel, N.S.; Rozehnal, I.; Thompson, R.L. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region. Remote Sens. Environ. 1991, 36, 73–104. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, H.; Qin, W.; Fu, K.; Li, X. An Extended 3-D Radiosity–Graphics Combined Model for Studying Thermal-Emission Directionality of Crop Canopy. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2900–2918. [Google Scholar] [CrossRef]
- Li, X.; Ma, M.G.; Wang, J.; Liu, Q.; Che, T.; Hu, Z.Y.; Xiao, Q.; Liu, Q.H.; Su, P.X.; Chu, R.Z. Simultaneous remote sensing and ground-based experiment in the Heihe River Basin: Scientific objectives and experiment design. Adv. Earth Sci. 2008, 23, 897–914. [Google Scholar]
- Sandoval, C.; Kim, A.D. Extending generalized Kubelka-Munk to three-dimensional radiative transfer. Appl. Opt. 2015, 54, 7045–7053. [Google Scholar] [CrossRef]
- Fan, W.; Yan, G.; Xin, X.; Tao, X.; Yan, B.; Yao, Y.; Chen, L.; Ren, H.; Wang, H.; Zhou, H.; et al. WATER: Dataset of Spectral Reflectance Observations in the Yingke Oasis and Huazhaizi Desert Steppe Foci Experimental Areas; National Tibetan Plateau Data Center: Beijing, China, 2013. [Google Scholar] [CrossRef]
- Chen, L.; Yan, G.; Fan, W.; Ren, H.; Tao, X.; Zhang, W.; Wang, H.; Xin, X.; Zhang, Y. WATER: Dataset of BRDF Observations in the Yingke Oasis and Huazhaizi Desert Steppe foci Experimental Areas; National Tibetan Plateau Data Center: Beijing, China, 2013. [Google Scholar] [CrossRef]
- Fan, W.; Xin, X.; Tao, X.; Liu, S.; Zhou, C.; Chen, L.; Guo, X.; Zou, J.; Tao, X. WATER: Dataset of Ground Truth Measurement Synchronizing with PROBA CHRIS in the Yingke Oasis and Huazhaizi Desert Steppe Foci Experimental Areas on Jun 22, 2008; National Tibetan Plateau Data Center: Beijing, China, 2014. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, W.; Wang, H.; Ren, H.; Chen, L.; Qian, Y.; Wang, J.; Wang, T. WATER: Dataset of Vegetation Cover Fraction Observations in the Yingke Oasis, Huazhaizi Desert Steppe and Biandukou Foci Experimental Areas; National Tibetan Plateau Data Center: Beijing, China, 2013. [Google Scholar] [CrossRef]
- Fan, W.; Xin, X.; Yan, G.; Wang, J.; Tao, X.; Yao, Y.; Yan, B.; Shen, X.; Zhou, C.; Li, L.; et al. WATER: Dataset of LAI Measurements in the Yingke Oasis and Huazhaizi Desert Steppe Foci Experimental Areas; National Tibetan Plateau Data Center: Beijing, China, 2013. [Google Scholar] [CrossRef]
- Yao, Y.J.; Fan, W.J.; Liu, Q.; Li, L.; Yao, X.; Xin, X.Z.; Liu, X.H. Improved harvesting method for corn LAI measurement in corn whole growth stages. Trans. CSAE 2010, 26, 189–194. [Google Scholar]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Hoke, M.P. Status of Atmospheric Correction using a MODTRAN4-Based Algorithm. Proc. Spie Int. Soc. Opt. Eng. 2000, 4049, 11. [Google Scholar]
- Goel, N.S.; Grier, T. Estimation of canopy parameters for inhomogeneous vegetation canopies from reflectance data. III. TRIM: A model for radiative transfer in heterogeneous three-dimensional canopies. Int. J. Remote Sens. 1986, 25, 255–293. [Google Scholar] [CrossRef]
- Goel, N.S.; Grier, T. Estimation of canopy parameters of row planted vegetation canopies using reflectance data for only four view directions. Remote Sens. Environ. 1987, 21, 37–51. [Google Scholar] [CrossRef]
- Myneni, R.B.; Kanemasu, E.T. The hot spot of vegetation canopies. J. Quant. Spectrosc. Radiat. Transf. 1988, 40, 165–168. [Google Scholar] [CrossRef]
- Jupp, D.L.B.; Strahler, A.H. A hotspot model for leaf canopies. Remote Sens. Environ. 1992, 38, 193–210. [Google Scholar]
- Nicodemus, F.E.; Richmond, J.C.; Hsia, J.J.; Ginsberg, I.W.; Limperis, T. Geometrical Considerations and Nomenclature for Reflectance; Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1977.
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Widlowski, J.-L.; Mio, C.; Disney, M.; Adams, J.; Andredakis, I.; Atzberger, C.; Brennan, J.; Busetto, L.; Chelle, M.; Ceccherini, G. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sens. Environ. 2015, 169, 418–437. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Foliage area and architecture of plant canopies from sunfleck size distributions. Agric. For. Meteorol. 1992, 60, 249–266. [Google Scholar] [CrossRef]
- Chen, J.M.; Cihlar, J. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Appl. Opt. 1995, 34, 6211–6222. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Nilson, T.; Kobayashi, H.; Sonnentag, O.; Law, B.E.; Baldocchi, D.D. On the correct estimation of effective leaf area index: Does it reveal information on clumping effects? Agric. For. Meteorol. 2010, 150, 463–472. [Google Scholar] [CrossRef]
- Ryu, Y.; Sonnentag, O.; Nilson, T.; Vargas, R.; Kobayashi, H.; Wenk, R.; Baldocchi, D.D. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agric. For. Meteorol. 2010, 150, 63–76. [Google Scholar] [CrossRef]
- Lang, A.R.G.; Xiang, Y. Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies. Agric. For. Meteorol. 1986, 37, 229–243. [Google Scholar] [CrossRef]
Scenes | L (m·m−1) | θl (°) 1 | A1 (m) | A2 (m) | H (m) | φr (°) | Wp (m) 1 |
---|---|---|---|---|---|---|---|
Stage_rc1 | 0.5 | 49.3 | 0.25 | 0.75 | 0.5 | 0 | 0.07 |
Stage_rc2 | 1.5 | 43.4 | 0.5 | 0.5 | 0.8 | 0 | 0.07 |
Stage_rc3 | 2.5 | 48.4 | 0.75 | 0.25 | 1.1 | 0 | 0.07 |
Stage_cc | 3.5 | 46.7 | 1 | 0 | 1.4 | 0 | 0.07 |
Phenology | Date (2008) | L (m·m−1) | θl (°) | A1 (m) | A2 (m) | H (m) | φr (°) | Wp (m) |
---|---|---|---|---|---|---|---|---|
Emergence | 20 May | 0.23 | 49.16 | 0.2 | 0.80 | 0.16 | 110 | 0.03 |
Emergence | 25 May | 0.34 | 48.15 | 0.25 | 0.75 | 0.22 | 110 | 0.04 |
Jointing stage | 1 June | 0.46 | 48.15 | 0.30 | 0.70 | 0.35 | 110 | 0.07 |
Jointing stage | 16 June | 1.76 | 40.83 | 0.5 | 0.5 | 0.87 | 110 | 0.08 |
Jointing stage | 22 June | 2.52 | 59.0 | 0. 65 | 0.35 | 0.98 | 110 | 0.13 |
Jointing stage | 1 July | 4.52 | 37.83 | 0.85 | 0.15 | 1.54 | 110 | 0.14 |
Quadrats | L (m·m−1) | θl (°) | A1 (m) | A2 (m) | H (m) | φr (°) | Wp (m) |
---|---|---|---|---|---|---|---|
Corn 1 | 3.19 | 45.33 | 0.9 | 0.4 | 2.66 | 40 | 0.16 |
Corn 2 | 3.54 | 44.67 | 0.91 | 0.29 | 2.63 | 40 | 0.18 |
Corn 3 | 2.6 | 32.00 | 0.99 | 0.2 | 2.82 | 45 | 0.14 |
Rice 1 | 3.18 | 59.00 | 0.42 | 0.12 | 0.68 | 50 | 0.02 |
Rice 2 | 3.17 | 63.67 | 0.3 | 0.13 | 0.78 | 53 | 0.04 |
Matrimony vine 1 | 1.25 | 36.25 | 1.29 | 1.03 | 1.2 | 43 | 0.01 |
Matrimony vine 2 | 0.77 | 68.33 | 1.04 | 0.93 | 0.86 | 42 | 0.01 |
Scenes | Statistics | R_red | R_NIR | R_NIR_1 | R_NIR_m |
---|---|---|---|---|---|
Stage_rc1 | R | 0.9766 | 0.9282 | 0.8975 | 0.7972 |
RMSE | 0.0009 | 0.0046 | 0.0043 | 0.0029 | |
MAD | 1.98% | 1.87% | 1.86% | 9.82% | |
Stage_rc2 | R | 0.9902 | 0.9612 | 0.9683 | 0.9731 |
RMSE | 0.0009 | 0.0094 | 0.0056 | 0.0045 | |
MAD | 3.08% | 2.99% | 2.58% | 3.54% | |
Stage_rc3 | R | 0.9568 | 0.9678 | 0.9817 | 0.9754 |
RMSE | 0.0011 | 0.0087 | 0.0048 | 0.0061 | |
MAD | 4.64% | 1.68% | 1.81% | 1.93% | |
Stage_cc | R | 0.9296 | 0.9601 | 0.9699 | 0.9850 |
RMSE | 0.0009 | 0.082 | 0.0056 | 0.0031 | |
MAD | 4.03% | 1.82% | 2.64% | 0.99% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Liu, Y. A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame. Remote Sens. 2020, 12, 3600. https://doi.org/10.3390/rs12213600
Ma X, Liu Y. A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame. Remote Sensing. 2020; 12(21):3600. https://doi.org/10.3390/rs12213600
Chicago/Turabian StyleMa, Xu, and Yong Liu. 2020. "A Modified Geometrical Optical Model of Row Crops Considering Multiple Scattering Frame" Remote Sensing 12, no. 21: 3600. https://doi.org/10.3390/rs12213600