GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software
"> Figure 1
<p>Main interface of global navigation satellite system time series noise reduction software (GNSS-TS-NRS).</p> "> Figure 2
<p>The result of TEST_1 after inserting an 18 mm (offset) step function in 4 epochs.</p> "> Figure 3
<p>The root mean square (RMS) of ten sites in three coordination directions.</p> "> Figure 4
<p>The times series visualization of BJFS GPS station.</p> "> Figure 5
<p>The box plot of station 0~4 in the east direction.</p> "> Figure 6
<p>The violin plot of station 0~4 in the east direction.</p> "> Figure 7
<p>Power spectral density (PSD) of three-direction time series at BJFS and CHUN (ChangChun GPS Station) from 1999 to 2019.</p> "> Figure 8
<p>Probability density functions and cumulative distribution function of north-direction time series at ACSO GPS station (N coordinate). (<b>a</b>) Residual time series with alpha-stable distribution; (<b>b</b>) cumulative density function of residual time series and alpha-stable distribution (correlation; alpha = 0.98); (<b>c</b>) residual time series with normal distribution; (<b>d</b>) cumulative density function of residual time series and normal distribution (correlation; norm = 0.98).</p> "> Figure 9
<p>Searching for nearby sites and finding co-located sites.</p> "> Figure 10
<p>Four signal components of simulation data I.</p> "> Figure 11
<p>Simulation data II (<b>left</b>) and III (<b>right</b>) are the signal sequences on the top; the left and right are the same. The bottom is the respective noise, the left is white noise of 4 dB, and the right is the power law- and white noise (PL+WN)-type noise (white noise amplitude is 5 mm, colored noise amplitude 0.02 mm, the spectral index of power law noise is −1.2).</p> "> Figure 12
<p>Result of noise reduction with method of simulation data I.</p> "> Figure 13
<p>Signal sequence graph of simulation data I after noise reduction in different methods.</p> "> Figure 14
<p>The BJFS station coordinate time series is judged by the 3 IQR rule for gross errors, and blue stars indicate gross errors.</p> "> Figure 15
<p>The correlation coefficient between the <span class="html-italic">IMF</span> obtained by empirical mode decomposition (EMD) and the original signal.</p> "> Figure 16
<p>The <span class="html-italic">IMFs</span> of BJFS station in U direction from EMD.</p> "> Figure 17
<p>BJFS station U direction time series processed by four noise reduction methods.</p> ">
Abstract
:1. Introduction
2. Program Language and Installation
3. Software Features of GNSS-TS-NRS
3.1. Common Mode Error Mitigation Model
3.1.1. Stacking Filtering Method
3.1.2. Weighted Stacking Filtering Method
3.1.3. Correlation Weighted Stacking Filtering Method
3.1.4. Distance Weighted Filtering Method
3.1.5. Principal Component Analysis
3.2. Noise Reduction Analysis Model
3.2.1. Empirical Mode Decomposition (Method 1)
3.2.2. Signal Noise Aliasing Reduction (Method 2)
- Step 1: Initialization: Download raw data , ;
- Step 2: EMD decomposition to obtain , and trend items ;
- Step 3: Calculate the correlation coefficient; the boundary is ;
- Step 4: Low-frequency reconstruction ;
- Step 5: Eliminate the first high frequency ;
- Step 6: ;
- Step 7: High-frequency reconstruction: ;
- Return to step 2.
3.2.3. Average Period and Power Density (Method 3)
3.2.4. Composite Evaluation Index (Method 4)
3.2.5. Ensemble Empirical Mode Decomposition (Method 5)
3.3. Time Series Processing Tools
3.3.1. GNSS Time Series Format Convert
3.3.2. Offset Correction and Analysis
3.3.3. Outlier Detection Function
3.4. Time Series Plot and Statistical Analysis
3.4.1. Root Mean Square Calculation
3.4.2. Correlation Coefficient Calculation
3.4.3. Plot GNSS Time Series
3.4.4. Box-Whisker Plot and Violin Plot Statistics
3.4.5. Power Spectral Density Analysis
3.4.6. Distribution Estimation
3.5. Nearby Sites and Finding Co-Located Sites
4. Noise Reduction Test and Result
4.1. Simulated Test with GNSS-TS-NRS
4.2. Test GNSS-TS-NRS with Real GNSS Data
5. Conclusions and Future Research Direction
Author Contributions
Funding
Conflicts of Interest
References
- Wu, S.; Nie, G.; Meng, X.; Liu, J.; He, Y.; Xue, C.; Li, H. Comparative Analysis of the Effect of the Loading Series from GFZ and EOST on Long-Term GPS Height Time Series. Remote Sens. 2020, 12, 2822. [Google Scholar] [CrossRef]
- Bock, Y.; Melgar, D. Physical applications of GPS geodesy: A review. Rep. Prog. Phys. 2016, 79, 106801. [Google Scholar]
- He, X.; Montillet, J.P.; Fernandes, R.; Bos, M.; Yu, K.; Hua, X.; Jiang, W. Review of current GPS methodologies for producing accurate time series and their error sources. J. Geodyn. 2017, 106, 12–29. [Google Scholar] [CrossRef]
- Montillet, J.P.; Bos, M.S. (Eds.) Geodetic Time Series Analysis in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Fernandes, R.M.S.; Ambrosius, B.A.C.; Noomen, R.; Bastos, L.; Combrinck, L.; Miranda, J.M.; Spakman, W. Angular velocities of Nubia and Somalia from continuous GPS data: Implications on present-day relative kinematics. Earth Planet. Sci. Lett. 2004, 222, 197–208. [Google Scholar] [CrossRef]
- Fernandes, R.M.S.; Bastos, L.; Miranda, J.M.; Lourenço, N.; Ambrosius, B.A.C.; Noomen, R.; Simons, W. Defining the plate boundaries in the Azores region. J. Volcanol. Geotherm. Res. 2006, 156, 1–9. [Google Scholar] [CrossRef]
- Montillet, J.P.; Williams, S.D.P.; Koulali, A.; McClusky, S.C. Estimation of offsets in GPS time-series and application to the detection of earthquake deformation in the far-field. Geophys. J. Int. 2015, 200, 1207–1221. [Google Scholar] [CrossRef] [Green Version]
- Sauber, J.; Plafker, G.; Molnia, B.F.; Bryant, M.A. Crustal deformation associated with glacial fluctuations in the eastern Chugach Mountains, Alaska. J. Geophys. Res. Solid Earth 2000, 105, 8055–8077. [Google Scholar] [CrossRef] [Green Version]
- Tregoning, P.; Ramillien, G.; McQueen, H.; Zwartz, D. Glacial isostatic adjustment and nonstationary signals observed by GRACE. J. Geophys. Res. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- King, M.A.; Padman, L. Accuracy assessment of ocean tide models around Antarctica. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Bos, M.S.; Penna, N.T.; Baker, T.F.; Clarke, P.J. Ocean tide loading displacements in western Europe: 2. GPS-observed anelastic dispersion in the asthenosphere. J. Geophys. Res. Solid Earth 2015, 120, 6540–6557. [Google Scholar] [CrossRef]
- Van Dam, T.; Collilieux, X.; Wuite, J.; Altamimi, Z.; Ray, J. Nontidal ocean loading: Amplitudes and potential effects in GPS height time series. J. Geod. 2012, 86, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.D.P. The effect of colored noise on the uncertainties of ratesestimated from geodetic time series. J. Geod. 2003, 76, 483–494. [Google Scholar] [CrossRef]
- Herring, T. MATLAB Tools for viewing GPS velocities and time series. GPS Solut. 2003, 7, 194–199. [Google Scholar] [CrossRef]
- Tian, Y. iGPS: IDL tool package for GPS position time series analysis. GPS Solut. 2011, 15, 299–303. [Google Scholar] [CrossRef]
- Vitti, A. Sigseg: A tool for the detection of position and velocity discontinuities in geodetic time-series. GPS Solut. 2012, 16, 405–410. [Google Scholar] [CrossRef]
- Wu, D.; Yan, H.; Shen, Y. TSAnalyzer, a GNSS time series analysis software. GPS Solut. 2017, 21, 1389–1394. [Google Scholar] [CrossRef]
- Santamaría-Gómez, A. SARI: Interactive GNSS position time series analysis software. GPS Solut. 2019, 23, 52. [Google Scholar] [CrossRef]
- Williams, S.D. CATS: GPS coordinate time series analysis software. GPS Solut. 2008, 12, 147–153. [Google Scholar] [CrossRef]
- Bos, M.; Fernandes, R.; Bastos, L. Hector User Manual Version 1.7.2. Available online: http://segal.ubi.pt/hector/manual_1.7.2.pdf (accessed on 27 August 2020).
- Langbein, J. Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. J. Geod. 2017, 91, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Lanagran-Soler, F.; Vazquez, R.; Arahal, M.R. A Matlab Educational GUI for Analysis of GNSS Coverage and Precision. IFAC-PapersOnLine 2015, 48, 93–98. [Google Scholar] [CrossRef]
- Kaselimi, M.; Doulamis, N.; Delikaraoglou, D.; Protopapadakis, E. GNSSGET and GNSSPLOT Platforms-Matlab GUIs for Retrieving GNSS Products and Visualizing GNSS Solutions. In VISIGRAPP (5: VISAPP); SciTePress: Funchal, Madeira, Portugal, 2018; pp. 626–633. [Google Scholar]
- Dabove, P.; Di Pietra, V.; Piras, M. GNSS Positioning Using Mobile Devices with the Android Operating System. ISPRS Int. J. Geo-Inf. 2020, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Rattan, K.S.; Klingbeil, N.W. Introductory Mathematics for Engineering Applications; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Wdowinski, S.; Bock, Y.; Zhang, J.; Fang, P.; Genrich, J. Southern California Permanent GPS Geodetic Array: Spatial Filtering of Daily Positions for Estimating Coseismic and Postseismic Displacements Induced by the 1992 Landers Earthquake. J. Geophys. Res. Solid Earth 1997, 102, 18057–18070. [Google Scholar] [CrossRef]
- Arnoso, J.; Riccardi, U.; Benavent, M.; Tammaro, U.; Montesinos, F.G.; Blanco-Montenegro, I.; Vélez, E. Strain Pattern and Kinematics of the Canary Islands from GNSS Time Series Analysis. Remote Sens. 2020, 12, 3297. [Google Scholar] [CrossRef]
- Nikolaidis, R. Observation of Geodetic and Seismic Deformation with the Global Positioning System; University of California: San Diego, CA, USA, 2002. [Google Scholar]
- Tian, Y.; Shen, Z. Correlation Weighted Stacking Filtering of Common-Mode Component in GPS Observation Network. Acta Seismol. Sin. 2011, 33, 198–208. [Google Scholar]
- Dong, D.; Fang, P.; Bock, Y.; Webb, F.; Prawirodirdjo, L.; Kedar, S.; Jamason, P. Spatiotemporal Filtering Using Principal Component Analysis and Karhunen-Loeve Expansion Approaches for Regional GPS Network Analysis. J. Geophys. Res. Solid Earth 2006, 111, 3405–3421. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Li, W.; Xu, G.; Li, B. Spatiotemporal filtering of regional gnss network’s position time series with missing data using principle component analysis. J. Geod. 2014, 88, 1–12. [Google Scholar] [CrossRef]
- Zou, R.; Chen, C.; Li, Y.; Zhou, S. GNSS GAOJINGDU SHUJU CHULI-GAMIT/Globk RUMEN; China University of China Press: Wuhan, China, 2019; ISBN 9787562545668. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lu, T.; Qian, W.; He, X.; Wang, X. An EMD Noise Reduction Method for Reducing Signal Noise Aliasing. Jgg 2020, 40, 111–116. [Google Scholar]
- Qian, W.; Lu, T.; He, X.; Xu, J. A New Method for Noise Reduction Analysis of GPS Elevation Time Series Based on EMD. Jgg 2020, 40, 242–246. [Google Scholar]
- Lu, T.; Qian, W.; He, X.; Le, Y. An Improved EMD Method for Determining Boundary IMF. Jgg 2020, 40, 720–725. [Google Scholar]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Breaker, L.C.; Ruzmaikin, A. Estimating rates of acceleration based on the 157-year record of sea level from San Francisco, California, USA. J. Coast. Res. 2013, 29, 43–51. [Google Scholar]
- Williams, S.D. Offsets in global positioning system time series. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Klos, A.; Bogusz, J.; Figurski, M.; Kosek, W. On the handling of outliers in the GNSS time series by means of the noise and probability analysis. In IAG 150 Years; Springer: Cham, Switzerland, 2015; pp. 657–664. [Google Scholar]
- Jonathan, C.L. Box and Whiskers Plot (without Statistics Toolbox). MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/42470-box-and-whiskers-plot-without-statistics-toolbox (accessed on 27 August 2020).
- Hoffmann, H. Simple Violin Plot Using Matlab Default Kernel Density Estimation. Available online: https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/45134/versions/11/previews/violin.m/index.htm (accessed on 27 August 2020).
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Hua, X.; Yu, K.; Xuan, W.; Lu, T.; Zhang, W.; Chen, X. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Adv. Space Res. 2015, 55, 1316–1327. [Google Scholar] [CrossRef]
- Nolan, J.P. Numerical calculation of stable densities and distribution functions. Communications in statistics. Stoch. Models 1997, 13, 759–774. [Google Scholar] [CrossRef]
- Beran, J. Statistics for Long-Memory Processes; CRC Press: Boca Raton, FL, USA, 1994; Volume 61. [Google Scholar]
- Arturo Serrano. Normalized Histogram. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange_/22802-normalized-histogram (accessed on 27 August 2020).
- Montillet, J.-P.; He, X.; Yu, K.; Xiong, C. Application of Lévy Processes in Modelling (Geodetic) Time Series with Mixed Spectra, Nonlin. Processes Geophys. Discuss. 2020. in review. [Google Scholar] [CrossRef]
- Ma, X.; Yu, K.; Montillet, J.P.; He, X. One-step solution to local tie vector determination at co-located GNSS/VLBI sites. Studia Geophys. Geod. 2018, 62, 535–561. [Google Scholar] [CrossRef]
- Bitharis, S.; Ampatzidis, D.; Pikridas, C.; Fotiou, A.; Rossikopoulos, D.; Schuh, H. The role of GNSS vertical velocities to correct estimates of sea level rise from tide gauge measurements in Greece. Mar. Geod. 2017, 40, 297–314. [Google Scholar] [CrossRef]
- Collilieux, X.; Wöppelmann, G. Global sea-level rise and its relation to the terrestrial reference frame. J. Geod. 2011, 85, 9–22. [Google Scholar] [CrossRef]
Method | I | II | III | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | SNR | RMSE | SNR | RMSE | SNR | ||||
1 | 0.9303 | 1.0033 | 7.4029 | 0.9983 | 0.6978 | 299.4933 | 0.9900 | 1.7208 | 50.0330 |
2 | 0.9726 | 0.6156 | 18.4766 | 0.9984 | 0.6837 | 311.2626 | 0.9900 | 1.7155 | 50.2418 |
3 | 0.9696 | 0.6613 | 16.6838 | 0.9991 | 0.5135 | 552.3157 | 0.9949 | 1.2186 | 98.1886 |
4 | 0.9488 | 0.8582 | 10.0070 | 0.9983 | 0.6978 | 299.4933 | 0.9949 | 1.2186 | 98.1886 |
Method | Boundary IMF Value | ||
---|---|---|---|
I | II | III | |
1 | 5 | 3 | 3 |
3 | 3 | 4 | 4 |
4 | 4 | 3 | 4 |
Criterion | 3 IQR | 3 Sigma | 5 Sigma | MAD |
---|---|---|---|---|
Error rate (%) | 0.196 | 0.352 | 0.196 | 0.274 |
Method | Evaluation Indicator | ||
---|---|---|---|
RMSE | SNR | ||
1 | 0.9149 | 5.1463 | 5.0256 |
2 | 0.9153 | 5.1327 | 5.0839 |
3 | 0.9149 | 5.1463 | 5.0256 |
4 | 0.9240 | 4.8740 | 5.7292 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Yu, K.; Montillet, J.-P.; Xiong, C.; Lu, T.; Zhou, S.; Ma, X.; Cui, H.; Ming, F. GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software. Remote Sens. 2020, 12, 3532. https://doi.org/10.3390/rs12213532
He X, Yu K, Montillet J-P, Xiong C, Lu T, Zhou S, Ma X, Cui H, Ming F. GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software. Remote Sensing. 2020; 12(21):3532. https://doi.org/10.3390/rs12213532
Chicago/Turabian StyleHe, Xiaoxing, Kegen Yu, Jean-Philippe Montillet, Changliang Xiong, Tieding Lu, Shijian Zhou, Xiaping Ma, Hongchao Cui, and Feng Ming. 2020. "GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software" Remote Sensing 12, no. 21: 3532. https://doi.org/10.3390/rs12213532
APA StyleHe, X., Yu, K., Montillet, J. -P., Xiong, C., Lu, T., Zhou, S., Ma, X., Cui, H., & Ming, F. (2020). GNSS-TS-NRS: An Open-Source MATLAB-Based GNSS Time Series Noise Reduction Software. Remote Sensing, 12(21), 3532. https://doi.org/10.3390/rs12213532