Reply to Comment on Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sens. 2019, 11, 2657
<p>(<b>a</b>) Time series of vertical total electron content (VTEC), band-pass filtered (0~0.05 Hz) VTEC, and band-pass filtered (0~0.05Hz) receiver differential code bias (rDCB) route mean squares (RMS) at BOGT station (4.64°N, 74.08°W) from 2000 to 2020. The blue and green solid lines indicate the variations of Global Ionosphere Maps (GIM)-TEC and band-pass filtered GIM-TEC, respectively. The red solid line indicates band-pass filtered rDCB RMS, taken from the bottom panel c). (<b>b</b>) Time series of GPS rDCB values from 2003 to 2020. The blue dashed rectangles “A” and “B” show the changes of rDCB with ionospheric activity. (<b>c</b>) Time series of rDCB RMS at BOGT station. The grey dots and red solid line denote the raw rDCB RMS and band-pass filtered (0~0.05 Hz) rDCB RMS, respectively.</p> "> Figure 2
<p>(<b>a</b>) Time series of all GPS satellite P1-P2 DCB (sDCB) from 2000 to 2020. The red dots indicate the changes in DCB values for GPS satellite PRN 28. (<b>b</b>) Time series of band-pass filtered (0~1.5 Hz) sDCB RMS for GPS PRN 28 (SVN 44), and band-pass filtered (0~1.5 Hz) rDCB RMS from 2000 to 2020. The red solid line and blue dots represent the filtered RMS changes for GPS satellite PRN 28 DCB and rDCB at BOGT station, respectively.</p> ">
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sardón, E.; Zarraoa, N. Estimation of Total Electron Content Using GPS Data: How Stable Are the Differential Satellite and Receiver Instrumental Biases. Radio Sci. 1997, 32, 1899–1910. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, D.H.; Xiao, Z. The influence of geomagnetic storms on the estimation of GPS instrumental biases. Ann. Geophys. 2009, 27, 1613–1623. [Google Scholar] [CrossRef]
- Coster, A.; Williams, J.; Weatherwax, A.; Rideout, W.; Herne, D. Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Sci. 2013, 48, 190–196. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, H.; Jin, Y.; Zhang, W.; Hao, Y.; Xiao, Z. The variation of the estimated GPS instrumental bias and its possible connection with ionospheric variability. Sci. China Tech. Sci. 2014, 57, 67–79. [Google Scholar] [CrossRef]
- Themens, D.R.; Jayachandran, P.T.; Langley, R.B. The nature of GPS differential receiver bias variability: An examination in the polar cap region. J. Geophys. Res. Space Phys. 2015, 120, 8155–8175. [Google Scholar] [CrossRef]
- Choi, B.-K.; Lee, S.J. The influence of grounding on GPS receiver differential code biases. ASR 2018, 62, 457–463. [Google Scholar] [CrossRef]
- Xiang, Y.; Xu, Z.; Gao, Y.; Yu, W. Understanding long-term variations in GPS differential code biases. GPS Solut. 2020, 24, 118. [Google Scholar] [CrossRef]
- Choi, B.-K.; Sohn, D.-H.; Lee, S.J. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receiver from 2014 to 2016. Remote Sens. 2019, 11, 2657. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Lei, J.; Yue, X. Comment on Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receiver from 2014 to 2016. Remote Sens. 2019, 11, 2657. Remote Sens. 2020, 12, 3496. [Google Scholar] [CrossRef]
- Villiger, A.; Schaer, S.; Dach, R.; Prange, L.; Sušnik, A.; Jäggi, A. Determination of GNSS pseudo-absolute code biases and their long-term combination. J. Geod. 2019, 93, 1487–1500. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. CODE’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.H.; Zhang, W.; Li, Q.; Shi, L.Q.; Xiao, Z. Accuracy Analysis of the GPS Instrumental Bias Estimated from Observations in Middle and Low Latitudes. Ann. Geophys. 2010, 28, 1571–1580. [Google Scholar] [CrossRef] [Green Version]
- Brunini, C.; Azpilicueta, F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model Under Different Geomagnetic Regions and Ionospheric Conditions. J. Geod. 2010, 84, 293–304. [Google Scholar] [CrossRef]
- Kao, S.; Chen, W.; Weng, D.; Ji, S. Factors affecting the estimation of GPS receiver instrumental biases. Survey Rev. 2013, 45, 59–67. [Google Scholar] [CrossRef]
- Strugarek, D.; Sośnica, K.; Jäggi, A. Characteristics of GOCE orbits based on Satellite Laser Ranging. Adv. Spa. Res. 2019, 63, 417–431. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, B.-K.; Sohn, D.-H.; Lee, S.J. Reply to Comment on Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sens. 2019, 11, 2657. Remote Sens. 2020, 12, 3510. https://doi.org/10.3390/rs12213510
Choi B-K, Sohn D-H, Lee SJ. Reply to Comment on Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sens. 2019, 11, 2657. Remote Sensing. 2020; 12(21):3510. https://doi.org/10.3390/rs12213510
Chicago/Turabian StyleChoi, Byung-Kyu, Dong-Hyo Sohn, and Sang Jeong Lee. 2020. "Reply to Comment on Choi et al. Correlation between Ionospheric TEC and the DCB Stability of GNSS Receivers from 2014 to 2016. Remote Sens. 2019, 11, 2657" Remote Sensing 12, no. 21: 3510. https://doi.org/10.3390/rs12213510