Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction
<p>The TanDEM-X DEM of Greenland. The red lines mark the basin boundaries. The blue line indicates an elevation of 2000 m. NO and others are the names of basins. The black frame is region 1, the purple frame is region 2, and the gray frame is region 3.</p> "> Figure 2
<p>The distribution of sampling points of the four DEMs.</p> "> Figure 3
<p>The workflow of river network extraction.</p> "> Figure 4
<p>The fitting relationships between the extraction threshold and the rate of change in the number of extracted river networks.</p> "> Figure 5
<p>Histogram plots of height differences for DEM minus IceBridge.</p> "> Figure 6
<p>(<b>a</b>) River extraction results with a threshold of 25,000, (<b>b</b>) river extraction results with a threshold of 2000, (<b>c</b>) river extraction results with a threshold of 1000, (<b>d</b>) river extraction results with a threshold of 500, (<b>e</b>) river extraction results with a threshold of 300, (<b>f</b>) river extraction results with a threshold of 100. The background image is from Landsat-8, and the acquisition time of the image is August 6, 2014. The blue lines represent the river network digitized based on the Landsat image. The red lines indicate the river network extracted from TanDEM-X.</p> "> Figure 7
<p>Comparison of remote sensing images and river network results in different years. The background images in (<b>a</b>–<b>d</b>) are from Landsat-8, and the acquisition dates are July 16, 2012; August 19, 2013; August 6, 2014; and July 10, 2016, respectively. The blue line is the river network digitized based on the Landsat images. The red lines in (<b>a</b>–<b>c</b>) are the river networks extracted from TanDEM-X. The red line in (<b>d</b>) is from ArcticDEM.</p> "> Figure 8
<p>Verification of the GIMP1 river network extraction result. The basin name of the inset map is the Southwest basin. Panel (<b>a</b>) is the distribution of the actual river network, and panel (<b>b</b>) is the river network extraction result from the GIMP1 product. The background image is from Landsat-7 and was acquired on July 20, 2005.</p> "> Figure 9
<p>Verification of the TanDEM-X river network extraction result. The basin name of the inset map is the Southwest basin. Panel (<b>a</b>) is the distribution of the actual river network, and panel (<b>b</b>) is the river network extraction result for the TanDEM-X product. The background image is from Landsat-8 and was acquired on August 6, 2014. River network information on the fused image is not obvious, so the fused image is enhanced.</p> "> Figure 10
<p>Verification of the GIMP2 river network extraction result. The basin name of the inset map is the southwest basin. Panel (<b>a</b>) is the distribution of the actual river network, and panel (<b>b</b>) is the river network extraction result for the GIMP2 product. The background image is from Landsat-8 and was acquired on August 6, 2014. River network information on the fused image is not obvious, so the fused image is enhanced.</p> "> Figure 11
<p>Verification of the ArcticDEM river network extraction result. The basin name of the inset map is the Southwest basin. Panel (<b>a</b>) is the distribution of the actual river network, and panel (<b>b</b>) is the river network extraction result for the ArcticDEM product. The background image is from Landsat-8 and was acquired on July 10, 2016.</p> "> Figure 12
<p>(<b>a</b>) The river network extraction results for GIMP1 are compared with the actual digitized river network. The background image is from Landsat-7 and was acquired on July 20, 2005. (<b>b</b>) The river network extraction results for TanDEM-X compared with the actual digitized river network. (<b>c</b>) The river network extraction results for GIMP2 compared with the actual digitized river network. The background image for (<b>b</b>,<b>c</b>) are from Landsat-8 and was acquired on August 06, 2014. (<b>d</b>) The river network extraction results of ArcticDEM are compared with the actual river network digitized. The background image is from Landsat-8, and acquired on July 10, 2016.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. GIMP DEM
2.1.2. TanDEM-X DEM
2.1.3. ArcticDEM
2.1.4. IceBridge
2.1.5. Landsat
2.2. Methods
2.2.1. Sampling Point Selection
2.2.2. Accuracy Evaluation of the DEMs
2.2.3. River Network Extraction
3. Results
3.1. DEM Accuracy
3.1.1. Accuracy Evaluation of the DEMs
3.1.2. Regional Error Analysis of the DEMs
3.1.3. Impact of Interannual Data on DEM Accuracy
3.2. River Network Extraction
3.2.1. The Selection of Threshold
3.2.2. Effect of Image Selection on Verification of Extraction Results
3.2.3. Analysis of River Network Extraction Results of Different DEMs
4. Discussion
4.1. Data Source Differences of DEM Dataset
4.2. Radar Signal Penetration of TanDEM-X
4.3. Geographical Impact
4.4. Time Selection of IceBridge data
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alley, R.B.; Andrews, J.T.; Brigham-Grette, J.; Clarke, G.K.C.; Cuffey, K.M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; et al. History of the Greenland Ice Sheet Paleoclimatic insights. Quat. Sci. Rev. 2010, 29, 1728–1756. [Google Scholar] [CrossRef]
- Hanna, E.; Navarro, F.J.; Pattyn, F.; Domingues, C.M.; Fettweis, X.; Ivins, E.R.; Nicholls, R.J.; Ritz, C.; Smith, B.; Tulaczyk, S. Ice sheet mass balance and climate change. Nature 2013, 498, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Rignot, E.; Thomas, R.H. Mass Balance of Polar Ice Sheets. Science 2002, 297, 1502–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowdeswell, J.A. The Greenland Ice Sheet and Global Sea-Level Rise. Science 2006, 311, 963–964. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Enderlin, E.M.; Howat, I.M.; Jeong, S.; Noh, M.-J.; van Angelen, J.H.; van den Broeke, M.R. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 866–872. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M.; Bamber, J.; Ettema, J.; Rignot, E.; Schrama, E.; van de Berg, W.J.; van Meijgaard, E.; Velicogna, I.; Wouters, B. Partitioning Recent Greenland Mass Loss. Science 2009, 326, 984–986. [Google Scholar] [CrossRef] [Green Version]
- Luthcke, S.B.; Zwally, H.J.; Abdalati, W.; Rowlands, D.D.; Ray, R.D.; Nerem, R.S.; Lemoine, F.G.; McCarthy, J.J.; Chinn, D.S. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations. Science 2006, 314, 1286–1289. [Google Scholar] [CrossRef] [Green Version]
- Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 2010, 468, 803–806. [Google Scholar] [CrossRef]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 2011, 469, 521–524. [Google Scholar] [CrossRef]
- Joughin, I.; Das, S.B.; Flowers, G.E.; Behn, M.D.; Alley, R.B.; King, M.A.; Smith, B.E.; Bamber, J.L.; van den Broeke, M.R.; van Angelen, J.H. Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere 2013, 7, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Dillabaugh, C.R.; Niemann, K.O.; Richardson, D. Semi-Automated Extraction of Rivers from Digital Imagery. GeoInformatica 2002, 6, 263–284. [Google Scholar] [CrossRef]
- Merwade, V.M. An Automated GIS Procedure for Delineating River and Lake Boundaries. Trans. GIS 2007, 11, 213–231. [Google Scholar] [CrossRef]
- Yang, K.; Smith, L.C. Supraglacial Streams on the Greenland Ice Sheet Delineated from Combined Spectral–Shape Information in High-Resolution Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Tedesco, M.; Smith, L.C.; Behar, A.E.; Overstreet, B.T. Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images. Cryosphere 2014, 8, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Lampkin, D.J.; VanderBerg, J. Supraglacial melt channel networks in the Jakobshavn Isbrae region during the 2007 melt season. Hydrol. Process. 2014, 28, 6038–6053. [Google Scholar] [CrossRef]
- Chu, V.W.; Smith, L.C.; Yang, K.; Gleason, C.J.; Rennermalm, A.K.; Pitcher, L.H.; Legleiter, C.J.; Forster, R.R. Remote Estimation of Greenland Ice Sheet Supraglacial River Discharge using GIS Modeling and WorldView-2 Satellite Imagery. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 1 December 2014. [Google Scholar]
- Yang, K.; Smith, L.C.; Chu, V.W.; Gleason, C.J.; Li, M. A Caution on the Use of Surface Digital Elevation Models to Simulate Supraglacial Hydrology of the Greenland Ice Sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5212–5224. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, Y.; Yuan, X.; Yang, X.; Huang, J.; Yu, Y. Threshold Selection of River Network Extraction Based on Different DEM Scales Using ATRIC Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Toutin, T. Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J. Photogramm. Remote Sens. 2006, 60, 170–181. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Q. Digital Elevation Model, 1st ed.; Wuhan Technical University of Surveying and Mapping Press: Wuhan, China, 2000; pp. 12–15. [Google Scholar]
- Endreny, T.; Wood, E.F.; Lettenmaier, D. Satellite-derived digital elevation model accuracy: Hydrological modelling requirements. Hydrol. Process. 2000, 14, 177–194. [Google Scholar] [CrossRef]
- Miliaresis, G.C.; Paraschou, C.V.E. Vertical accuracy of the SRTM DTED level 1 of Crete. Int. J. Appl. Earth Obs. 2005, 7, 49–59. [Google Scholar] [CrossRef]
- Tang, G.; Li, F.; Liu, X. Digital Elevation Model Course, 3rd ed.; Science Press: Beijing, China, 2016; pp. 126–127. [Google Scholar]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Zink, M.; Bachmann, M.; Brautigam, B.; Fritz, T.; Hajnsek, I.; Moreira, A.; Wessel, B.; Krieger, G. TanDEM-X: The New Global DEM Takes Shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Brutigam, B.; Moreira, A. Tandem-X: A Radar Interferometer with Two Formation Flying Satellites. Acta Astronautica 2013, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J. Ice flow in Greenland for the International Polar Year 2008–2009. Geophys. Res. Lett. 2012, 39, L11501. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Guangdao, H. Some problems of automatic extraction of water system based on digital elevation model. Geogr. Geogr. Inf. Sci. 2004, 20, 11–14. [Google Scholar]
- Rignot, E.; Jezek, K.; Van Zyl, J.; Drinkwater, M.R.; Lou, Y. Radar scattering from snow facies of the Greenland ice sheet: Results from the AIRSAR 1991 campaign. In Proceedings of the IGARSS’93-IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 1270–1272. [Google Scholar]
- Abdullahi, S.; Wessel, B.; Huber, M.; Wendleder, A.; Kuenzer, C. Estimating Penetration-Related X-Band InSAR Elevation Bias: A Study over the Greenland Ice Sheet. Remote. Sens. 2019, 11, 2903. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. 2018, 139, 171–182. [Google Scholar] [CrossRef]
DEM | Data Distribution Facility | Download Link | Sources of DEM | Resolution (m) |
---|---|---|---|---|
ArcticDEM | PGC | http://data.pgc.umn.edu/ | GeoEye-1, WorldView-1, WorldView-2, WorldView-3 | 100 |
GIMP1 DEM | NSIDC | https://nsidc.org/data/NSIDC-0645/version/1 | ASTER, SPOT-5 DEM, AVHRR | 90 |
GIMP2 DEM | NSIDC | https://nsidc.org/data/NSIDC-0715/versions/1 | GeoEye-1, WorldView-1, WorldView-2, WorldView-3 | 30 |
TanDEM-X | EOC | https://geoservice.dlr.de/web/dataguide/tdm90/ | TerraSAR-X, TanDEM-X | 90 |
DEM | Time Scale of DEM | The Acquisition Period of the IceBridge Data |
---|---|---|
GIMP1 DEM | 2003–2009 | 2003–2009 * |
GIMP2 DEM | 2009–2015 | 2009–2015 |
TanDEM-X | 2011–2014 | 2011–2014 |
ArcticDEM | 2015–2018 | 2015–2018 |
Satellite | Acquisition Date | Composite Band | Resolution(m) |
---|---|---|---|
Landsat-7 | 07/20/2005 | Band 4, 3, 2 | 30 |
Landsat-7 | 06/19/2011 | Band 4, 3, 2 | 30 |
Landsat-7 | 07/16/2012 | Band 4, 3, 2 | 30 |
Landsat-8 | 08/19/2013 | Band 5, 4, 3 | 30 |
Landsat-8 | 08/06/2014 | Band 5, 4, 3 | 30 |
Landsat-8 | 07/10/2016 | Band 5, 4, 3 | 30 |
DEM | Region 1 (cm) | Region 2 (cm) | Region 3 (cm) | Mean (cm) | Overall Mean (cm) |
---|---|---|---|---|---|
GIMP1 | 5.69 | 4.71 | 2.12 | 4.17 | 3.76 |
TanDEM-X | 6.08 | 0.41 | 1.07 | 2.52 | |
GIMP2 | 2.89 | 3.11 | 7.25 | 4.42 | |
ArcticDEM | 4.69 | 1.47 | 5.66 | 3.94 |
DEM | Total Sampling Points | Removed Sampling Points | Rejection Rate |
---|---|---|---|
GIMP1 | 16,800 | 720 | 4.29% |
TanDEM-X | 21,307 | 127 | 0.60% |
GIMP2 | 37376 | 205 | 0.55% |
ArcticDEM | 28,023 | 159 | 0.57% |
DEM | ME (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) |
---|---|---|---|---|---|
GIMP1 | −0.72 | 40.71 | 14.34 | 3.87 | 5.74 |
TanDEM-X | −2.55 | 12.12 | 5.60 | 1.64 | 2.43 |
GIMP2 | −3.60 | 81.54 | 6.98 | 2.49 | 3.68 |
ArcticDEM | 0.85 | 60.40 | 6.02 | 1.52 | 2.26 |
Elevation Range | GIMP1 <2000 | GIMP1 >2000 | GIMP2 <2000 | GIMP2 >2000 | TanDEM-X<2000 | TanDEM-X>2000 | ArcticDEM<2000 | ArcticDEM>2000 |
---|---|---|---|---|---|---|---|---|
ME (m) | 1.78 | −6.71 | −3.84 | −3.04 | −1.83 | −4.19 | 1.10 | 0.30 |
STD (m) | 18.33 | 69.09 | 96.84 | 3.45 | 14.04 | 5.32 | 73.18 | 2.40 |
RMSE (m) | 12.14 | 15.75 | 8.14 | 4.01 | 6.01 | 4.71 | 7.37 | 1.39 |
MAD (m) | 4.79 | 2.37 | 2.84 | 1.68 | 1.72 | 1.35 | 1.67 | 0.70 |
NMAD (m) | 7.10 | 3.51 | 4.21 | 2.50 | 2.54 | 2.01 | 2.47 | 1.04 |
DEM | ME (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) |
---|---|---|---|---|---|
GIMP1_CW | −1.87 | 62.88 | 13.24 | 4.49 | 6.66 |
GIMP1_NE | −0.21 | 9.41 | 4.72 | 1.92 | 2.84 |
GIMP1_NO | −0.35 | 4.57 | 3.46 | 1.50 | 2.23 |
GIMP1_NW | −0.21 | 12.60 | 8.39 | 2.83 | 4.19 |
GIMP1_SE | 0.49 | 23.16 | 15.51 | 6.33 | 9.39 |
GIMP1_SW | −0.66 | 13.60 | 9.17 | 3.69 | 5.48 |
GIMP2_CW | −1.63 | 7.43 | 4.89 | 2.82 | 4.18 |
GIMP2_NE | −3.10 | 11.53 | 4.66 | 2.07 | 3.07 |
GIMP2_NO | −1.35 | 6.47 | 2.77 | 1.46 | 2.17 |
GIMP2_NW | −3.49 | 7.87 | 5.10 | 2.39 | 3.54 |
GIMP2_SE | −4.57 | 18.74 | 7.23 | 2.31 | 3.42 |
GIMP2_SW | −6.49 | 187.85 | 5.60 | 3.10 | 4.59 |
TanDEM-X_CW | −1.49 | 7.44 | 4.67 | 1.45 | 2.15 |
TanDEM-X_NE | −3.77 | 9.18 | 5.03 | 1.80 | 2.67 |
TanDEM-X_NO | −3.46 | 4.04 | 4.43 | 1.45 | 2.14 |
TanDEM-X_NW | −3.08 | 5.77 | 4.50 | 1.34 | 1.99 |
TanDEM-X_SE | −2.34 | 25.16 | 8.59 | 2.12 | 3.14 |
TanDEM-X_SW | −1.56 | 7.85 | 4.35 | 1.16 | 1.73 |
ArcticDEM_CW | 1.37 | 6.17 | 3.46 | 1.55 | 2.30 |
ArcticDEM_NE | 0.65 | 7.68 | 3.35 | 1.26 | 1.86 |
ArcticDEM_NO | 0.98 | 2.97 | 2.09 | 1.03 | 1.53 |
ArcticDEM_NW | 2.60 | 6.75 | 4.23 | 1.64 | 2.43 |
ArcticDEM_SE | 1.63 | 7.78 | 4.48 | 1.69 | 2.50 |
ArcticDEM_SW | −1.06 | 115.30 | 5.38 | 1.49 | 2.21 |
DEM | Yr. Mon | Mean (m) | STD (m) | RMSE (m) | MAD (m) | NMAD (m) | RMSE_STD (m) | NMAD_STD (m) |
---|---|---|---|---|---|---|---|---|
GIMP1 | 2003.05 | −2.07 | 14.23 | 8.44 | 2.28 | 3.38 | 2.39 | 4.47 |
2005.05 | −3.53 | 15.97 | 9.73 | 3.92 | 5.81 | |||
2006.05-06 | 0.16 | 15.92 | 10.07 | 3.84 | 5.69 | |||
2007.05,09 | 0.29 | 11.44 | 6.93 | 2.27 | 3.36 | |||
2008.06-08 | 3.85 | 29.44 | 14.73 | 5.16 | 7.65 | |||
2009.03-05 | 1.72 | 16.00 | 9.68 | 3.35 | 4.97 | |||
TanDEM—X | 2011.03-05 | −3.51 | 8.52 | 5.20 | 1.29 | 1.92 | 0.46 | 2.40 |
2012.03-05 | −2.89 | 13.39 | 5.65 | 1.47 | 2.18 | |||
2013.03-04 | −1.59 | 9.40 | 4.71 | 1.76 | 2.61 | |||
2014.03-05 | −1.86 | 7.38 | 4.45 | 1.82 | 2.71 | |||
GIMP2 | 2009.03-05 | −4.88 | 9.29 | 6.18 | 2.78 | 4.12 | 0.72 | 6.37 |
2010.03-05 | −4.20 | 7.41 | 5.36 | 2.52 | 3.74 | |||
2011.03-05 | −2.65 | 6.35 | 4.45 | 2.49 | 3.70 | |||
2012.03-05 | −2.36 | 9.72 | 4.81 | 2.15 | 3.19 | |||
2013.03-04 | −0.92 | 7.72 | 4.05 | 2.42 | 3.58 | |||
2014.03-05 | −1.18 | 8.12 | 3.93 | 2.06 | 3.06 | |||
2015.03-05, 09-10 | −0.79 | 26.25 | 4.80 | 2.57 | 3.81 | |||
ArcticDEM | 2015.03-05, 09-10 | 0.90 | 18.69 | 3.95 | 1.25 | 1.86 | 0.14 | 5.50 |
2016.05, 08-09 | 1.84 | 6.52 | 3.72 | 1.65 | 2.45 | |||
2017.03-05, 07 | 1.51 | 6.38 | 3.55 | 1.47 | 2.18 | |||
2018.03-05 | 1.62 | 6.39 | 3.69 | 1.54 | 2.28 |
DEM | Extracted River Network Length (m) | Digitized River Network Length (m) | Difference (m) | Accuracy (%) |
---|---|---|---|---|
GIMP1 | 949,826.94 | 745,636.18 | −204,190.76 | 8.83% |
TanDEM-X | 740,792.98 | 979,700.55 | 238,907.57 | 50.78% |
GIMP2 | 791,657.02 | 1,005,942.09 | 214,285.07 | 47.32% |
ArcticDEM | 671,954.38 | 970,166.72 | 298,212.34 | 50.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Z.; Chi, Z.; Yang, Y.; Chen, S.; Huang, H.; Cheng, X.; Hui, F. Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sens. 2020, 12, 3429. https://doi.org/10.3390/rs12203429
Xing Z, Chi Z, Yang Y, Chen S, Huang H, Cheng X, Hui F. Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sensing. 2020; 12(20):3429. https://doi.org/10.3390/rs12203429
Chicago/Turabian StyleXing, Ziyang, Zhaohui Chi, Ying Yang, Shiyi Chen, Huabing Huang, Xiao Cheng, and Fengming Hui. 2020. "Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction" Remote Sensing 12, no. 20: 3429. https://doi.org/10.3390/rs12203429
APA StyleXing, Z., Chi, Z., Yang, Y., Chen, S., Huang, H., Cheng, X., & Hui, F. (2020). Accuracy Evaluation of Four Greenland Digital Elevation Models (DEMs) and Assessment of River Network Extraction. Remote Sensing, 12(20), 3429. https://doi.org/10.3390/rs12203429